
Domain-specific Model
Checking with Bogor

SAnToS Laboratory, Kansas State University, USA

http://bogor.projects.cis.ksu.edu

US Army Research Office (ARO)
US National Science Foundation (NSF)
US Department of Defense
Advanced Research Projects Agency (DARPA)

Boeing
Honeywell Technology Center
IBM
Intel

Lockheed Martin
NASA Langley
Rockwell-Collins ATC
Sun Microsystems

Support

Session II: DFS in Explicit Model Checking

Matthew B. Dwyer John HatcliffRobby

Matthew Hoosier

active thread Thread2() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

SumToN declare a namespace PARAM
with a constant N so that we
can easily modify N’s value.

declare a namespace PARAM
with a constant N so that we
can easily modify N’s value.

active thread Thread2() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

SumToN

declare a ‘byte’ to be an
integer with range 0..255
that will ‘wrap around’ when
operated on.

declare a ‘byte’ to be an
integer with range 0..255
that will ‘wrap around’ when
operated on.

active thread Thread2() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

SumToN

declare three byte-
sized variables
declare three byte-
sized variables

active thread Thread2() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

SumToN

Each thread reads
the value of x in t1,
then t2, then sums
t1 and t2 to get a
new value for x.

Each thread reads
the value of x in t1,
then t2, then sums
t1 and t2 to get a
new value for x.

active thread Thread2() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

SumToN

The “monitoring” thread
asserts that x is not
equal to the value of N.

The “monitoring” thread
asserts that x is not
equal to the value of N.

active thread Thread2() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

SumToN

Note: This transition
can be arbitrarily
interleaved with all
others from Thread1
and Thread2.

Note: This transition
can be arbitrarily
interleaved with all
others from Thread1
and Thread2.

Assessment

Answering this question requires us to
reason about possible schedules (i.e.,
orderings of instruction execution)

Let’s try to find schedules that cause the
assertion to be violated for various values
of N…

Pick a value of N (e.g., 5) Can the assertion in
the SumToN example be violated (i.e., can x ever
have the value 5)?

SumToN Assertion Violation
Violating schedule for N = 1

[-, 0, 0, x = 1, t1 = 0, t2 = 0]

violation

[0, 0, 0, x = 1, t1 = 0, t2 = 0]
(initial
values)

0:0

active thread Threadk() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do {
assert (x !=

(byte)PARAM.N); }
return;

}
}

k:0

k:1

k:2

0:0

...that was easy!

Move this thread
first….

Move this thread
first….

active thread Threadk() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do {
assert (x !=

(byte)PARAM.N); }
return;

}
}

SumToN Assertion Violation
Violating schedule for N = 2

1:0 [0, 1, 0, x = 1, t1 = 1, t2 = 0]

[0, 2, 0, x = 1, t1 = 1, t2 = 1]

violation

[0, 0, 0, x = 1, t1 = 0, t2 = 0]
(initial
values)

1:1

[0, 0, 0, x = 2, t1 = 1, t2 = 1]1:2

[-, 0, 0, x = 2, t1 = 1, t2 = 1]0:0

k:0

k:1

k:2

0:0

Move only Thread1
until x = 2, then check
assertion

Move only Thread1
until x = 2, then check
assertion

active thread Threadk() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do {
assert (x !=

(byte)PARAM.N); }
return;

}
}

SumToN Assertion Violation
Violating schedule for N = 2

2:0 [0, 0, 1, x = 1, t1 = 1, t2 = 0]

[0, 0, 2, x = 1, t1 = 1, t2 = 1]

[0, 0, 0, x = 1, t1 = 0, t2 = 0]
(initial
values)

2:1

[0, 0, 0, x = 2, t1 = 1, t2 = 1]2:2

[-, 0, 0, x = 2, t1 = 1, t2 = 1]0:0

AnotherAnother

k:0

k:1

k:2

0:0 violation

Move only Thread2
until x = 2, then check
assertion

Move only Thread2
until x = 2, then check
assertion

active thread Threadk() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do {
assert (x !=

(byte)PARAM.N); }
return;

}
}

SumToN Assertion Violation
Violating schedule for N = 2

1:0 [0, 1, 0, x = 1, t1 = 1, t2 = 0]

[0, 1, 1, x = 1, t1 = 1, t2 = 0]

violation

[0, 0, 0, x = 1, t1 = 0, t2 = 0]
(initial
values)

2:0

[0, 1, 2, x = 1, t1 = 1, t2 = 1]2:1

[0, 1, 0, x = 2, t1 = 1, t2 = 1]2:2

[-, 1, 0, x = 2, t1 = 1, t2 = 1]0:0

Yet AnotherYet Another

k:0

k:1

k:2

0:0

Move only Thread1 for
one step, then move
Thread2 three steps as
before….

Move only Thread1 for
one step, then move
Thread2 three steps as
before….

Computation Tree

system statesystem state

transitiontransition

choice points
(multiple enabled transitions)

choice points
(multiple enabled transitions)

We can think of the
possible schedules
(execution traces) as
forming a
computation tree…

Computation Tree

We can think of the
possible schedules
(execution traces) as
forming a
computation tree…

First example trace
(schedule)

First example trace
(schedule)

Computation Tree

We can think of the
possible schedules
(execution traces) as
forming a
computation tree…

Second example trace
(schedule)

Second example trace
(schedule)

Computation Tree

We can think of the
possible schedules
(execution traces) as
forming a
computation tree…

Third example trace
(schedule)

Third example trace
(schedule)

Computation Tree

We can think of the
possible schedules
(execution traces) as
forming a
computation tree…

Fourth example trace
(schedule)

Fourth example trace
(schedule)

Exhaustive Depth-first Search

Bogor can perform
exhaustive depth-first
searches of a system’s
state-space.

At choice points, Bogor
chooses an unexplored
transition and remembers
that it needs to come
back and explore the
others…

At choice points, Bogor
chooses an unexplored
transition and remembers
that it needs to come
back and explore the
others…

Exhaustive Depth-first Search

Bogor can perform
exhaustive depth-first
searches of a system’s
state-space.

When Bogor has finished
with one subtree, …

When Bogor has finished
with one subtree, …

… it continues on
with the siblings.

… it continues on
with the siblings.

Exhaustive Depth-first Search

Bogor can perform
exhaustive depth-first
searches of a system’s
state-space.

When Bogor has finished
with one subtree, …

When Bogor has finished
with one subtree, …

… it continues on
with the siblings.

… it continues on
with the siblings.

Exhaustive Depth-first Search

Bogor can perform
exhaustive depth-first
searches of a system’s
state-space.

When Bogor has finished
with one subtree, …

When Bogor has finished
with one subtree, …

… it continues on
with the siblings.

… it continues on
with the siblings.

Exhaustive Depth-first Search

Bogor can perform
exhaustive depth-first
searches of a system’s
state-space.

… until the entire
computation tree is
covered.

… until the entire
computation tree is
covered.

Exhaustive Depth-first Search

Bogor can perform
exhaustive depth-first
searches of a system’s
state-space.

… until the entire
computation tree is
covered.

… until the entire
computation tree is
covered.

DFS Basic Data Structures
State vector

holds the value of all variables as well as program counters
(current position of execution) for each process, and indicates a
particular position in the computation tree (as previously covered
when discussing state transition systems for BIR).

Depth-first stack
holds the states (or transitions) encountered down a certain path
in the computation tree.

Seen state set
holds the state vectors for all the states that have been checked
already (seen) in the depth-first search.

Note: we will represent the values of these data structures in an abstract manner that
captures the essence of the issues, but not the actual implementation. Bogor and most
other model-checkers actually use multiple clever representations to obtain a highly
space/speed optimized search algorithm.

SumToN State Vector Example
The state vector is the data structure corresponding to the state

(as previously covered when discussing state transition systems for
BIR). It holds the value of all variables as well as program counters
for each process, and indicates a particular position in the
computation tree.

… example state with
details on the next slide

… example state with
details on the next slide

active thread Thread2() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

SumToN State Vector Example

…program
counters for
each thread

…program
counters for
each thread

[0,0,2,1,1,1]Example State Vector:

active thread Threadk() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do {
assert (x !=

(byte)PARAM.N); }
return;

}
}

SumToN Assertion Violation
Violating schedule for N = 2

1:0 [0, 1, 0, x = 1, t1 = 1, t2 = 0]

[0, 1, 1, x = 1, t1 = 1, t2 = 0]

[0, 0, 0, x = 1, t1 = 0, t2 = 0]
(initial
values)

2:0

[0, 1, 2, x = 1, t1 = 1, t2 = 1]2:1

[0, 1, 0, x = 2, t1 = 1, t2 = 1]2:2

[-, 1, 0, x = 2, t1 = 1, t2 = 1]0:0

…recall state vectors leading
to violation of assertion

…recall state vectors leading
to violation of assertion

k:0

k:1

k:2

0:0

Depth-first Stack

The depth-first stack serves two purposes
When we come to the end of a path (or a state that
we have seen before) and backtrack, the stack tells
us where to backtrack to.
If an error is encountered, the current value of the
stack gives the computation path that leads to the
error.

G
row

th

Depth-first Stack

Depth-first Stack
G

row
th

Stack of State Vectors

The depth-first stack can be implemented to
hold state vectors

straight-forward implementation

[0, 0, 0, 1, 0, 0]

[0, 1, 0, 1, 1, 0]

[0, 1, 1, 1, 1, 0]

[0, 1, 2, 1, 1, 1]

[0, 1, 0, 2, 1, 1]

[-, 1, 0, 2, 1, 1]

Violating schedule
for N = 2
Violating schedule
for N = 2

Depth-first Stack

[1:0]

[2:0]

[2:1]

[2:2]

G
row

th

Stack of Transitions

The depth-first stack can be implemented to
hold transitions

requires less space, but …(see next slide)…

[0:0]

Depth-first Stack of Transitions
Generating a new state requires that the
analyzer run a transition on the current state.

Since the analyzer is not holding states in the
stack, if it needs to back-track and return to a
previously encountered state, it needs an
“undo” operation to run the transitions in the
reverse direction.

Since the analyzer is not holding states in the
stack, when providing variable values as
diagnostic information for an error path, the
analyzer needs a simulation mode where choice
points are decided by the stacked transitions.

Depth-first Stack of Transitions

Since the analyzer is not
holding states in the stack, if it
needs to back-track and return
to a previously encountered
state, it needs an “undo”
operation to run the
transitions in the reverse
direction.

[2:0]
[2:1]

[1:0]

Stack of Transitions

pop, s2 = undo(2:1,s3)
pop, s1 = undo(2:0,s2)
pop, s0 = undo(1:0,s1)

…current state s3
…current state s3

s2
s2

s1
s1

s0
s0

Depth-first Stack of Transitions
Since the analyzer is not holding states in the stack,
when providing variable values as diagnostic information
for an error path, the analyzer needs a simulation mode
where choice points are decided by the transitions

[2:0]
[2:1]
[2:2]

[1:0]

Stack of Transitions
leading to error state

s3 = eval(2:1,s2)

s2 = eval(2:0,s1)

s1 = eval(1:0,s0)

… s4 = eval(2:2,s3)
…

s2
s2

s1
s1

s0
s0

s3
s3

Seen State Set

Often the analyzer will proceed along a different
path to a state S that it has checked before.
In such a case, there is no need to check S
again (or any of S’s children in the computation
tree) since these have been checked before.
Bogor maintains a Seen State set (implemented
as a hash table) of states that have been seen
before, and it consults this set to avoid
exploring/checking a part of the computation
tree that is identical to a part that has already
been explored before.

active thread Threadk() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do {
assert (x !=

(byte)PARAM.N); }
return;

}
}

=

Revisting Via A Different Path

[0,0,0,1,0,0]

State Vectors in Fragment
of Computation Tree

[0,1,0,1,1,0]

1:0

[0,1,1,1,1,0]

2:0

[0,0,1,1,1,0]

2:0

[0,1,1,1,1,0]

1:0

…no need to explore this branch
because it is identical to one
previously explored

…no need to explore this branch
because it is identical to one
previously explored

k:0

k:1

k:2

0:0

active thread Threadk() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do {
assert (x !=

(byte)PARAM.N); }
return;

}
}

Computation Tree as Graph
Some times we view the
computation tree as a graph

2:0 1:0

…sharing a node corresponds to
(re)visiting a node that has been
seen before.

…sharing a node corresponds to
(re)visiting a node that has been
seen before.

[0,1,1,1,1,0]

[0,0,0,1,0,0]

[0,1,0,1,1,0]

1:0

[0,0,1,1,1,0]

2:0

k:0

k:1

k:2

0:0

active thread Threadk() {
loc loc0:

do { t1 := x; }
goto loc1;

loc loc1:
do { t2 := x; }
goto loc2;

loc loc2:
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0:

do {
assert (x !=

(byte)PARAM.N); }
return;

}
}

Seen State Set
Computation Tree

1:0

[0,1,1,1,1,0]

2:0

…when Bogor gets to this state,
it checks the Seen Set and finds
it already has been checked, so it
backtracks from this point

…when Bogor gets to this state,
it checks the Seen Set and finds
it already has been checked, so it
backtracks from this point

Seen Set

2:0

…
[0,0,0,1,0,0]
[0,1,0,1,1,0]
[0,1,1,1,1,0]
…
[0,0,1,1,1,0]

[0,1,1,1,1,0]

1:0

[0,0,0,1,0,0]

[0,1,0,1,1,0] [0,0,1,1,1,0]

k:0

k:1

k:2

0:0

Non-Terminating Systems

Due to the use of the Seen Set, checking
a non-terminating system may terminate
if the system only has a finite number of
states.
In basic BIR, all systems are “finite”
because of the bounds on basic data
types.
However, some systems are “more finite”
than others.

i.e., they have a much smaller state-space.

Non-Terminating Systems

Consider this example
system…

How many states does
it have?
Does execution of the
system terminate?
Does an exhaustive
analysis of the state-
space of the system
terminate?

system Loops {

boolean x;

active thread Thread1() {
loc loc0: do { x := !x; }

goto loc0;
}

active thread Thread2() {
loc loc0: do { x := !x; }

goto loc0;
}

}

