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active thread Thread2() {
loc loc0: 

do { t1 := x; }
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0: 

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0: 

do { t1 := x; }
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

SumToN declare a namespace PARAM 
with a constant N so that we 
can easily modify N’s value.

declare a namespace PARAM 
with a constant N so that we 
can easily modify N’s value.



active thread Thread2() {
loc loc0: 

do { t1 := x; }
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0: 

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0: 

do { t1 := x; }
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

SumToN

declare a ‘byte’ to be an 
integer with range 0..255 
that will ‘wrap around’ when 
operated on. 

declare a ‘byte’ to be an 
integer with range 0..255 
that will ‘wrap around’ when 
operated on. 



active thread Thread2() {
loc loc0: 

do { t1 := x; }
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0: 

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0: 

do { t1 := x; }
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

SumToN

declare three byte-
sized variables  
declare three byte-
sized variables  



active thread Thread2() {
loc loc0: 

do { t1 := x; }
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0: 

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0: 

do { t1 := x; }
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

SumToN

Each thread reads 
the value of x in t1, 
then t2, then sums 
t1 and t2 to get a 
new value for x.

Each thread reads 
the value of x in t1, 
then t2, then sums 
t1 and t2 to get a 
new value for x.



active thread Thread2() {
loc loc0: 

do { t1 := x; }
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0: 

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0: 

do { t1 := x; }
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

SumToN

The “monitoring” thread 
asserts that x is not 
equal to the value of N.

The “monitoring” thread 
asserts that x is not 
equal to the value of N.



active thread Thread2() {
loc loc0: 

do { t1 := x; }
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0: 

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0: 

do { t1 := x; }
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

SumToN

Note: This transition 
can be arbitrarily 
interleaved with all 
others from Thread1 
and Thread2. 

Note: This transition 
can be arbitrarily 
interleaved with all 
others from Thread1 
and Thread2. 



Assessment

Answering this question requires us to 
reason about possible schedules (i.e., 
orderings of instruction execution)

Let’s try to find schedules that cause the 
assertion to be violated for various values 
of N…

Pick a value of N (e.g., 5)  Can the assertion in 
the SumToN example be violated (i.e., can x ever 
have the value 5)?



SumToN Assertion Violation
Violating schedule for N = 1

[-, 0, 0, x = 1, t1 = 0, t2 = 0]

violation

[0, 0, 0, x = 1, t1 = 0, t2 = 0]
(initial
values)

0:0

active thread Threadk() {
loc loc0: 

do { t1 := x; } 
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0: 

do { 
assert (x != 

(byte)PARAM.N); }
return;

}
}

k:0

k:1

k:2

0:0

...that was easy!

Move this thread 
first….

Move this thread 
first….



active thread Threadk() {
loc loc0: 

do { t1 := x; } 
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0: 

do { 
assert (x != 

(byte)PARAM.N); }
return;

}
}

SumToN Assertion Violation
Violating schedule for N = 2

1:0 [0, 1, 0, x = 1, t1 = 1, t2 = 0]

[0, 2, 0, x = 1, t1 = 1, t2 = 1]

violation

[0, 0, 0, x = 1, t1 = 0, t2 = 0]
(initial
values)

1:1

[0, 0, 0, x = 2, t1 = 1, t2 = 1]1:2

[-, 0, 0, x = 2, t1 = 1, t2 = 1]0:0

k:0

k:1

k:2

0:0

Move only Thread1 
until x = 2, then check 
assertion

Move only Thread1 
until x = 2, then check 
assertion



active thread Threadk() {
loc loc0: 

do { t1 := x; } 
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0: 

do { 
assert (x != 

(byte)PARAM.N); }
return;

}
}

SumToN Assertion Violation
Violating schedule for N = 2

2:0 [0, 0, 1, x = 1, t1 = 1, t2 = 0]

[0, 0, 2, x = 1, t1 = 1, t2 = 1]

[0, 0, 0, x = 1, t1 = 0, t2 = 0]
(initial
values)

2:1

[0, 0, 0, x = 2, t1 = 1, t2 = 1]2:2

[-, 0, 0, x = 2, t1 = 1, t2 = 1]0:0

AnotherAnother

k:0

k:1

k:2

0:0 violation

Move only Thread2 
until x = 2, then check 
assertion

Move only Thread2 
until x = 2, then check 
assertion



active thread Threadk() {
loc loc0: 

do { t1 := x; } 
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0: 

do { 
assert (x != 

(byte)PARAM.N); }
return;

}
}

SumToN Assertion Violation
Violating schedule for N = 2

1:0 [0, 1, 0, x = 1, t1 = 1, t2 = 0]

[0, 1, 1, x = 1, t1 = 1, t2 = 0]

violation

[0, 0, 0, x = 1, t1 = 0, t2 = 0]
(initial
values)

2:0

[0, 1, 2, x = 1, t1 = 1, t2 = 1]2:1

[0, 1, 0, x = 2, t1 = 1, t2 = 1]2:2

[-, 1, 0, x = 2, t1 = 1, t2 = 1]0:0

Yet AnotherYet Another

k:0

k:1

k:2

0:0

Move only Thread1 for 
one step, then move 
Thread2 three steps as 
before….

Move only Thread1 for 
one step, then move 
Thread2 three steps as 
before….



Computation Tree

system statesystem state

transitiontransition

choice points
(multiple enabled transitions)

choice points
(multiple enabled transitions)

We can think of the 
possible schedules 
(execution traces) as 
forming a 
computation tree…



Computation Tree

We can think of the 
possible schedules 
(execution traces) as 
forming a 
computation tree…

First example trace 
(schedule)

First example trace 
(schedule)



Computation Tree

We can think of the 
possible schedules 
(execution traces) as 
forming a 
computation tree…

Second example trace 
(schedule)

Second example trace 
(schedule)



Computation Tree

We can think of the 
possible schedules 
(execution traces) as 
forming a 
computation tree…

Third example trace 
(schedule)

Third example trace 
(schedule)



Computation Tree

We can think of the 
possible schedules 
(execution traces) as 
forming a 
computation tree…

Fourth example trace 
(schedule)

Fourth example trace 
(schedule)



Exhaustive Depth-first Search

Bogor can perform 
exhaustive depth-first 
searches of a system’s 
state-space.

At choice points, Bogor 
chooses an unexplored 
transition and remembers 
that it needs to come 
back and explore the 
others…

At choice points, Bogor 
chooses an unexplored 
transition and remembers 
that it needs to come 
back and explore the 
others…



Exhaustive Depth-first Search

Bogor can perform 
exhaustive depth-first 
searches of a system’s 
state-space.

When Bogor has finished 
with one subtree, …

When Bogor has finished 
with one subtree, …

… it continues on 
with the siblings.

… it continues on 
with the siblings.
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with the siblings.
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state-space.

When Bogor has finished 
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When Bogor has finished 
with one subtree, …
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with the siblings.

… it continues on 
with the siblings.



Exhaustive Depth-first Search

Bogor can perform 
exhaustive depth-first 
searches of a system’s 
state-space.

… until the entire 
computation tree is 
covered.

… until the entire 
computation tree is 
covered.



Exhaustive Depth-first Search

Bogor can perform 
exhaustive depth-first 
searches of a system’s 
state-space.

… until the entire 
computation tree is 
covered.

… until the entire 
computation tree is 
covered.



DFS Basic Data Structures
State vector

holds the value of all variables as well as program counters 
(current position of execution) for each process, and indicates a 
particular position in the computation tree (as previously covered 
when discussing state transition systems for BIR).

Depth-first stack
holds the states (or transitions) encountered down a certain path 
in the computation tree.

Seen state set
holds the state vectors for all the states that have been checked 
already (seen) in the depth-first search.

Note: we will represent the values of these data structures in an abstract manner that 
captures the essence of the issues, but not the actual implementation.  Bogor and most 
other model-checkers actually use multiple clever representations to obtain a highly 
space/speed optimized search algorithm.



SumToN State Vector Example
The state vector is the data structure corresponding to the state 

(as previously covered when discussing state transition systems for 
BIR). It holds the value of all variables as well as program counters 
for each process, and indicates a particular position in the 
computation tree.

… example state with 
details on the next slide

… example state with 
details on the next slide



active thread Thread2() {
loc loc0: 

do { t1 := x; }
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0: 

do { assert (x != (byte)PARAM.N); }
return;

}
}

system SumToN {
const PARAM { N = 1 };
typealias byte int wrap (0,255);

byte x := 1;
byte t1;
byte t2;

active thread Thread1() {
loc loc0: 

do { t1 := x; }
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

SumToN State Vector Example

…program 
counters for 
each thread

…program 
counters for 
each thread

[0,0,2,1,1,1]Example State Vector:



active thread Threadk() {
loc loc0: 

do { t1 := x; } 
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0: 

do { 
assert (x != 

(byte)PARAM.N); }
return;

}
}

SumToN Assertion Violation
Violating schedule for N = 2

1:0 [0, 1, 0, x = 1, t1 = 1, t2 = 0]

[0, 1, 1, x = 1, t1 = 1, t2 = 0]

[0, 0, 0, x = 1, t1 = 0, t2 = 0]
(initial
values)

2:0

[0, 1, 2, x = 1, t1 = 1, t2 = 1]2:1

[0, 1, 0, x = 2, t1 = 1, t2 = 1]2:2

[-, 1, 0, x = 2, t1 = 1, t2 = 1]0:0

…recall state vectors leading 
to violation of assertion

…recall state vectors leading 
to violation of assertion

k:0

k:1

k:2

0:0



Depth-first Stack

The depth-first stack serves two purposes
When we come to the end of a path (or a state that 
we have seen before) and backtrack, the stack tells 
us where to backtrack to.
If an error is encountered, the current value of the 
stack gives the computation path that leads to the 
error.

G
row

th

Depth-first Stack



Depth-first Stack
G

row
th

Stack of State Vectors

The depth-first stack can be implemented to 
hold state vectors

straight-forward implementation

[0, 0, 0, 1, 0, 0]

[0, 1, 0, 1, 1, 0]

[0, 1, 1, 1, 1, 0]

[0, 1, 2, 1, 1, 1]

[0, 1, 0, 2, 1, 1]

[-, 1, 0, 2, 1, 1]

Violating schedule 
for N = 2
Violating schedule 
for N = 2



Depth-first Stack

[1:0]

[2:0]

[2:1]

[2:2]

G
row

th

Stack of Transitions

The depth-first stack can be implemented to 
hold transitions

requires less space, but …(see next slide)…

[0:0]



Depth-first Stack of Transitions
Generating a new state requires that the 
analyzer run a transition on the current state.

Since the analyzer is not holding states in the 
stack, if it needs to back-track and return to a 
previously encountered state, it needs an 
“undo” operation to run the transitions in the 
reverse direction.

Since the analyzer is not holding states in the 
stack, when providing variable values as 
diagnostic information for an error path, the 
analyzer needs a simulation mode where choice 
points are decided by the stacked transitions.



Depth-first Stack of Transitions

Since the analyzer is not 
holding states in the stack, if it 
needs to back-track and return 
to a previously encountered 
state, it needs an “undo”
operation to run the 
transitions in the reverse 
direction.

[2:0]
[2:1]

[1:0]

Stack of Transitions

pop, s2 = undo(2:1,s3)
pop, s1 = undo(2:0,s2)
pop, s0 = undo(1:0,s1)

…current state s3
…current state s3

s2
s2

s1
s1

s0
s0



Depth-first Stack of Transitions
Since the analyzer is not holding states in the stack, 
when providing variable values as diagnostic information 
for an error path, the analyzer needs a simulation mode 
where choice points are decided by the transitions

[2:0]
[2:1]
[2:2]

[1:0]

Stack of Transitions 
leading to error state

s3 = eval(2:1,s2)

s2 = eval(2:0,s1)

s1 = eval(1:0,s0)

… s4 = eval(2:2,s3)
…

s2
s2

s1
s1

s0
s0

s3
s3



Seen State Set

Often the analyzer will proceed along a different 
path to a state S that it has checked before.
In such a case, there is no need to check S 
again (or any of S’s children in the computation 
tree) since these have been checked before.
Bogor maintains a Seen State set (implemented 
as a hash table) of states that have been seen 
before, and it consults this set to avoid 
exploring/checking a part of the computation 
tree that is identical to a part that has already 
been explored before.



active thread Threadk() {
loc loc0: 

do { t1 := x; } 
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0: 

do { 
assert (x != 

(byte)PARAM.N); }
return;

}
}

=

Revisting Via A Different Path

[0,0,0,1,0,0]

State Vectors in Fragment 
of Computation Tree

[0,1,0,1,1,0]

1:0

[0,1,1,1,1,0]

2:0

[0,0,1,1,1,0]

2:0

[0,1,1,1,1,0]

1:0

…no need to explore this branch 
because it is identical to one 
previously explored 

…no need to explore this branch 
because it is identical to one 
previously explored 

k:0

k:1

k:2

0:0



active thread Threadk() {
loc loc0: 

do { t1 := x; } 
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0: 

do { 
assert (x != 

(byte)PARAM.N); }
return;

}
}

Computation Tree as Graph
Some times we view the 
computation tree as a graph

2:0 1:0

…sharing a node corresponds to 
(re)visiting a node that has been 
seen before.

…sharing a node corresponds to 
(re)visiting a node that has been 
seen before.

[0,1,1,1,1,0]

[0,0,0,1,0,0]

[0,1,0,1,1,0]

1:0

[0,0,1,1,1,0]

2:0

k:0

k:1

k:2

0:0



active thread Threadk() {
loc loc0: 

do { t1 := x; } 
goto loc1;

loc loc1: 
do { t2 := x; }
goto loc2;

loc loc2: 
do { x := t1 + t2; }
goto loc0;

}

active thread Thread0() {
loc loc0: 

do { 
assert (x != 

(byte)PARAM.N); }
return;

}
}

Seen State Set
Computation Tree

1:0

[0,1,1,1,1,0]

2:0

…when Bogor gets to this state, 
it checks the Seen Set and finds 
it already has been checked, so it 
backtracks from this point

…when Bogor gets to this state, 
it checks the Seen Set and finds 
it already has been checked, so it 
backtracks from this point

Seen Set

2:0

…
[0,0,0,1,0,0]
[0,1,0,1,1,0]
[0,1,1,1,1,0]
…
[0,0,1,1,1,0]

[0,1,1,1,1,0]

1:0

[0,0,0,1,0,0]

[0,1,0,1,1,0] [0,0,1,1,1,0]

k:0

k:1

k:2

0:0



Non-Terminating Systems

Due to the use of the Seen Set, checking 
a non-terminating system may terminate 
if the system only has a finite number of 
states.
In basic BIR, all systems are “finite”
because of the bounds on basic data 
types.
However, some systems are “more finite”
than others.

i.e., they have a much smaller state-space.



Non-Terminating Systems

Consider this example 
system…

How many states does 
it have?
Does execution of the 
system terminate?
Does an exhaustive 
analysis of the state-
space of the system 
terminate?

system Loops {

boolean x;

active thread Thread1() {
loc loc0: do { x := !x; }

goto loc0;
}

active thread Thread2() {
loc loc0: do { x := !x; }

goto loc0;
}

}


