
Domain-specific Model
Checking with Bogor

SAnToS Laboratory, Kansas State University, USA

http://bogor.projects.cis.ksu.edu

US Army Research Office (ARO)
US National Science Foundation (NSF)
US Department of Defense
Advanced Research Projects Agency (DARPA)

Boeing
Honeywell Technology Center
IBM
Intel

Lockheed Martin
NASA Langley
Rockwell-Collins ATC
Sun Microsystems

Support

Session III: Bogor Architecture

Matthew B. Dwyer John HatcliffRobby

Matthew Hoosier

Outline

Overview
DFS algorithm
Bogor components
Configuration
Initialization

DFS Stack
Search algorithm
Scheduler

Seen Before Set
State Manager

State Representation
Types & Values
Value Factory
State Factory

Architecture

Core DFS Algorithm
seen := {s0}
stack := [s0]
DFS (s0)

DFS (s)
for each α ∈ enabled (s) do

s’ := α (s)
if s’ ∉ seen then

seen := seen ∪ {s’ }
push (stack, s’)
DFS (s’)
pop (stack)

end DFS

…put initial state in seen set…put initial state in seen set

…current path being explored in
computation tree begins with initial state

…current path being explored in
computation tree begins with initial state

…calculate the successor state …calculate the successor state

…if s’ has not been seen before, then
put it in the seen set

…if s’ has not been seen before, then
put it in the seen set

…put s’ on the stack which represents
the current path in the tree

…put s’ on the stack which represents
the current path in the tree

…iterate over all enabled transitions…iterate over all enabled transitions

…explore states reachable from s’…explore states reachable from s’

…remove s’ from the stack…remove s’ from the stack

Verified

Counter
Example

Lexer

Parser

Well-formed-
ness Checker

AST
Transformer

IExpEvaluator

ITransformer

ISearcher

IActionTaker

IBacktrackIF

IStateMgrIValueFactory

ISchedulingStgIStateFactory
.bir

.config

Internal Architecture

ICounterExWr IProgressMgr

IEventProvider IClassLoader

Extension Extension…Data-flow
Framework

…modular components with clean and well-designed API using design patterns

Customizable Checking Engine ModulesCustomizable Checking Engine Modules

Bogor Configuration

IActionTaker = DefaultActionTaker
IExpEvaluator = DefaultExpEvaluator
ISchedulingStrategist = DefaultSchedulingStrategist
ISearcher = DefaultSearcher
IStateManager = DefaultStateManager
ITransformer = DefaultTransformer
IBacktrackingInfoFactory = DefaultBacktrackingInfoFactory
IStateFactory = DefaultStateFactory
IValueFactory = DefaultValueFactory

ISearcher.maxErrors = 1
…

A Bogor configuration is a key-value set

Keys for component
interfaces
Keys for component
interfaces

Java class implementation
for each interface
Java class implementation
for each interface

Options for componentsOptions for components

IActionTaker = DefaultActionTaker
IExpEvaluator = DefaultExpEvaluator
ISchedulingStrategist = DefaultSchedulingStrategist
ISearcher = DefaultSearcher
IStateManager = DefaultStateManager
ITransformer = DefaultTransformer
IBacktrackingInfoFactory = DefaultBacktrackingInfoFactory
IStateFactory = DefaultStateFactory
IValueFactory = DefaultValueFactory

ISearcher.maxErrors = 1

…

ITransformer ISearcher

IActionTaker IBacktrackIF

IValueFactory ISchedulingStg IStateFactory

IExpEvaluator

IStateMgr

Bogor Initialization

Given a configuration,
Bogor instantiate the
specified components

Given a configuration,
Bogor instantiate the
specified components

DefaultAT DefaultBIF

DefaultTR DefaultSR

DefaultVF DefaultSS DefaultSF

DefaultSM

DefaultEE
Options are passed
to each component,
and connections
are established

Options are passed
to each component,
and connections
are established

Bogor Module Interface
Each Bogor component must implement IModule

Dispose this object
(unlink refs, etc.)
Dispose this object
(unlink refs, etc.)

Get additional
copyright notice
Get additional
copyright notice

Set options of the moduleSet options of the module

Connect this module with
other modules in the
current configuration

Connect this module with
other modules in the
current configuration

Outline

Overview
DFS primer
Bogor components
Configuration
Initialization

DFS Stack
Search algorithm
Scheduler

Seen Before Set
State Manager

State Representation
Types & Values
Value Factory
State Factory

Architecture

Type and Value Representations

Package: bogor.type

… ……
BIR types are categorized into two

Primitive types: int, long, float, double, etc.
Non-primitive types: null, record, lock, etc.

Types are created using a TypeFactory
Each type class has methods to access
information about the type being represented

Type and Value Representations

Package: bogor.type

… ……

For example, the record type class
has methods to access its fields’
names, types, and indices

For example, the record type class
has methods to access its fields’
names, types, and indices

Type and Value Representations

Package: bogor.module.value

… …
…

BIR values mimic BIR types structure
Primitive values: int, long, float, double, etc.
Non-primitive values: null, record, lock, etc.

Values are created using a ValueFactory

Type and Value Representations

Package: bogor.module.value

… …
…

Similar to the record type, the
record value interface has methods
to access its fields’s values

Similar to the record type, the
record value interface has methods
to access its fields’s values

Type and Value Representations

Package: bogor.module.value

… …
…

The hierarchy can be extended
to represent, for example, abstract or
symbolic values

The hierarchy can be extended
to represent, for example, abstract or
symbolic values

State Representation

Package: bogor.module.state

The state interface has methods to access
global values
active threads, their program counters and local vars.
create or kill threads, and enter or exit functions

States are created using a StateFactory

The state can be extended to include
additional information
The state can be extended to include
additional information

Outline

Overview
DFS algorithm
Bogor components
Configuration
Initialization

DFS Stack
Search algorithm
Scheduler

Seen Before Set
State Manager

State Representation
Types & Values
Value Factory
State Factory

Architecture

ISearcher IStateMgr

ISchedulingStg

Navigating The State-space

…customizable checking engine modules

Depth-first

Breadth-first

Heuristic
Search

Example
Instantiations

IBacktrackIF

ICounterExWr IProgressMgr

The ISearcher Module

ISearcher controls
how we traverse the
state-space graph

ISearcher controls
how we traverse the
state-space graph

seen := {s0}
stack := [s0]
DFS (s0)

DFS (s)
for each α ∈ enabled (s) do

s’ := α (s)
if s’ ∉ seen then

seen := seen ∪ {s’ }
push (stack, s’)
DFS (s’)
pop (stack)

end DFS

public class SimpleSearcher
extends ISearcher {

IState s;
ISchedulingStrategist ss;
IStateManager sm;
void initialize() {

s=createInitialState();
sm.storeState(s);

}
void search() {

while (true) {
if (!step()) {
if (!backtrack()) {

break;
}

}
}

}
}

SimpleSearcher
A DFS implementation of the state-space exploration

…abstract version…abstract version …outline of Bogor implementation…outline of Bogor implementation

SimpleSearcher
A DFS implementation of the state-space exploration

Step – explores the next unexplored
transition out of the current state
Backtrack – return to the nearest
state that has not been completely
explored, and generate the next
unexplored state that descends from
the current state

step()step()

backtrack()backtrack()

public class SimpleSearcher
extends ISearcher {

IState s;
ISchedulingStrategist ss;
IStateManager sm;
void initialize() {

s=createInitialState();
sm.storeState(s);

}
void search() {

while (true) {
if (!step()) {
if (!backtrack()) {

break;
}

}
}

}
}

createInitialState()createInitialState()step()step()

step()step()

step()step()

step()step() backtrack()backtrack()

backtrack()backtrack()

step()step()

SimpleSearcher

Step – explores the next unexplored
transition out of the current state
Backtrack – return to the nearest
state that has not been completely
explored, and explore the next
unexplored transition out of the
state

Search Module

ISearcher
create initial state
step
backtrack

SimpleSearcher
depth-first search
iteration-based

Package: bogor.module

ISearcher IStateMgr

ISchedulingStg

…customizable checking engine modules

Non-
deterministic

Priority-based

Partial Order
Reductions

Example
Instantiations

IBacktrackIF

ICounterExWr IProgressMgr

The ISchedulingStrategist Module

ISchedulingStrategist
picks the next transition to
explore at the current state

ISchedulingStrategist
picks the next transition to
explore at the current state

Scheduling Available Transitions

seen := {s0}
stack := [s0]
DFS (s0)

DFS (s)
for each α ∈ enabled (s) do

s’ := α (s)
if s’ ∉ seen then

seen := seen ∪ {s’ }
push (stack, s’)
DFS (s’)
pop (stack)

end DFS

Current stateCurrent state

Which transition should
be explored first?
Which transition should
be explored first?

Goal: encapsulate these information and decisions from the rest of the code

Once transitions have been
explored, what should be
done next?

Once transitions have been
explored, what should be
done next?

Scheduling Available Transitions

An object that holds what child
transitions have been explored
so far

When ISearcher needs to know what
to do, call ISchedulerStrategist
with info and ask for advice about what
transition to do next

Encapsulate using an ISchedulingStrategyInfo as a Memento

ISchedulingStrategyInfo

• Info about
total # of
transitions

• Info about
what to do next

When we first come to a state,
call ISchedulingStrategist
with all transitions as arguments
to create the info object

When we first come to a state,
call ISchedulingStrategist
with all transitions as arguments
to create the info object

Scheduling Available Transitions

ISchedulingStrategyInfo

• Info about
total # of
transitions

• Info about
what to do next

When we return to a state, pass
Info to ISchedulingStrategist
and ask for advice

When we return to a state, pass
Info to ISchedulingStrategist
and ask for advice

Scheduling Available Transitions

Encapsulate using an ISchedulingStrategyInfo as a Memento

An object that holds what child
transitions have been explored
so far

When ISearcher needs to know what
to do, call ISchedulerStrategist
with info and ask for advice about what
transition to do next

DefaultSchedulingStrategist &
DefaultSchedulingStrategyInfo

[2, 0][2, 0]

[2, 0][2, 0]

[2, 0][2, 0]

[3, 0][3, 0]

[2, 0][2, 0]
[2, 1][2, 1]

[2, 1][2, 1]

Info: [number of enabled transitions, last transition index chosen]Info: [number of enabled transitions, last transition index chosen]

ISchedulingStrategyInfo

Used to keep track
whether there is a
non-deterministic
choice
if yes, which
transition has been
taken

ISchedulingStrategist

Used to:
determine enabled transitions
determine which transition to take
create strategy info

DefaultSchedulingStrategist
Full state-space exploration

the scheduling policy ensure that each state is visited
At each choice point, the info contains

the number of enabled transitions
the last chosen transition index

advise() simply increase the last chosen transition index until
all are chosen

…customizable checking engine modules

The IBacktrackingInfoFactory Module

Backtracking Information

ISearcher IStateMgr

ISchedulingStg IBacktrackIF

ICounterExWr IProgressMgr

Creates information
to tell us how to
undo a transition

Creates information
to tell us how to
undo a transition

seen := {s0}
stack := [s0]
DFS (s0)

DFS (s)
for each α ∈ enabled (s) do

s’ := α (s)
if s’ ∉ seen then

seen := seen ∪ {s’ }
push (stack, s’)
DFS (s’)
pop (stack)

end DFS

Depth-first Stack
G

row
th

Stack of State Vectors

The depth-first stack can be implemented to
hold state vectors

straight-forward implementation

[0, 0, 0, 1, 0, 0]

[0, 1, 0, 1, 1, 0]

[0, 1, 1, 1, 1, 0]

[0, 1, 2, 1, 1, 1]

[0, 1, 0, 2, 1, 1]

[-, 1, 0, 2, 1, 1]

Depth-first Stack

[1:0]

[2:0]

[2:1]

[2:2]

G
row

th

Stack of Transitions

The depth-first stack can be implemented to
hold transitions

saves lots of space when working with real systems,
but need the ability to “undo”

[0:0]

Depth-first Stack of Transitions

Since the analyzer is not
holding states in the stack, if it
needs to back-track and return
to a previously encountered
state, it needs an “undo”
operation to run the
transitions in the reverse
direction.

[2:0]
[2:1]

[1:0]

Stack of Transitions

pop, s2 = undo(2:1,s3)
pop, s1 = undo(2:0,s2)
pop, s0 = undo(1:0,s1)

…current state s3
…current state s3

s2
s2

s1
s1

s0
s0

Backtracking Information
BacktrackingInfo

ISchedulingStrategyInfo

• Info about
total # of
transitions

• Info about
what to do next

When we are executing a
transition, create an
IBacktrackingInfo that
tells how to restore to the
state we were in…

When we are executing a
transition, create an
IBacktrackingInfo that
tells how to restore to the
state we were in…

e.g., Info about current
value of variable being
updated

Transition Specific
Information

Id of current state
Id of current thread

Backtracking Information

Information needed
to backtrack

state, thread ID, etc.
scheduling
information

which non-
deterministic choice
was made, if any

specific info for each
kind of action,
transformation, etc.

…for backtracking a global variable
assignment, we need the index of
global variable and its value before
the assignment

…for backtracking a global variable
assignment, we need the index of
global variable and its value before
the assignment

Backtracking Information —
Code Example

Backtracking an assignment to an int
global variable:
class DefaultIntGlobalBacktrackingInfo … {
private final int globalIndex;
private final int v;
private final Type vType;
…
public void backtrack(IState state) {
state.setGlobalValue(

globalIndex,
vf.newIntValue(vType, v));

}
}

Backtracking Information —
Code Example

The action evaluator creates the
backtracking info through the
backtracking info factory:
public IGlobalBacktrackingInfo takeAssignGlobalAction(

AssignAction a, int globalIndex, IValue value) {

…
IValue oldValue = s.getGlobalValue(globalIndex);
s.setGlobalValue(globalIndex, value);

return bif.createGlobalBacktrackingInfo(
…, globalIndex, oldValue, ssi);

}

SimpleSearcher.step()
A DFS implementation of the state-space exploration

step ()
if shouldBacktrack () ∨ isSeen () ∨

hasNoActiveThreads () then
return false

if isInvalidEndState () then
error (INVALID_END_STATE)
return false

T := ss.getEnabledTransformations (s)

ssi := ss.newStrategyInfo ()
α := ss.advise (s, T, ssi)

push (newBacktrackingInfo (s,T,α, ssi))

doTransition (s, α, ssi)
return true

end step

public class SimpleSearcher
extends ISearcher {

IState s;
ISchedulingStrategist ss;
IStateManager sm;
void initialize() {

s=createInitialState();
sm.storeState(s);

}
void search() {

while (true) {
if (!step()) {
if (!backtrack()) {

break;
}

}
}

}
}

public class SimpleSearcher
extends ISearcher {

IState s;
ISchedulingStrategist ss;
IStateManager sm;
void initialize() {

s=createInitialState();
sm.storeState(s);

}
void search() {

while (true) {
if (!step()) {
if (!backtrack()) {

break;
}

}
}

}
}

SimpleSearcher.step()
A DFS implementation of the state-space exploration

step ()
if shouldBacktrack () ∨ isSeen () ∨

hasNoActiveThreads () then
return false

if isInvalidEndState () then
error (INVALID_END_STATE)
return false

T := ss.getEnabledTransformations (s)

ssi := ss.newStrategyInfo ()
α := ss.advise (s, T, ssi)

push (newBacktrackingInfo (s,T,α, ssi))

doTransition (s, α, ssi)
return true

end step

…if we are forced to backtrack, we have
visited the current state, or if all threads
have completed, then we cannot step

…if we are forced to backtrack, we have
visited the current state, or if all threads
have completed, then we cannot step

…check if the current state is an invalid
state (deadlock check)

…check if the current state is an invalid
state (deadlock check)

…get all the enabled transformations by
calling the ISchedulingStrategist

…get all the enabled transformations by
calling the ISchedulingStrategist

…call the ISchedulingStrategist to pick
the next transition; ssi is used to record
necessary information to make sure each
transition will be executed eventually

…call the ISchedulingStrategist to pick
the next transition; ssi is used to record
necessary information to make sure each
transition will be executed eventually

…store the backtracking info necessary
for reversing the transition, and for
counter example generation

…store the backtracking info necessary
for reversing the transition, and for
counter example generation

…execute the transition and return true
to indicate a successful step

…execute the transition and return true
to indicate a successful step

SimpleSearcher.backtrack()

A DFS implementation of the state-space exploration
backtrack ()

bi := pop ()

while ¬bi.getSSI ().hasInfo () do
bi.backtrack (s)
if isStackEmpty ()

return false
bi := pop ()

T := bi.getTransformations ()

ssi := bi.getSSI ()
α := ss.advise (s, T, ssi)

push (newBacktrackingInfo (s,T,α, ssi))

doTransition (s, α, ssi)
return true

end backtrack

public class SimpleSearcher
extends ISearcher {

IState s;
ISchedulingStrategist ss;
IStateManager sm;
void initialize() {

s=createInitialState();
sm.storeState(s);

}
void search() {

while (true) {
if (!step()) {
if (!backtrack()) {

break;
}

}
}

}
}

public class SimpleSearcher
extends ISearcher {

IState s;
ISchedulingStrategist ss;
IStateManager sm;
void initialize() {

s=createInitialState();
sm.storeState(s);

}
void search() {

while (true) {
if (!step()) {
if (!backtrack()) {

break;
}

}
}

}
}

SimpleSearcher.backtrack()

A DFS implementation of the state-space exploration
backtrack ()

bi := pop ()

while ¬bi.getSSI ().hasInfo () do
bi.backtrack (s)
if isStackEmpty ()

return false
bi := pop ()

T := bi.getTransformations ()

ssi := bi.getSSI ()
α := ss.advise (s, T, ssi)

push (newBacktrackingInfo (s,T,α, ssi))

doTransition (s, α, ssi)
return true

end backtrack

…get the last backtracking info…get the last backtracking info

…keep backtracking until we find a state
that is not fully expanded (i.e., all of its
enabled transitions have not been
explored); if it does not exist, then return
false (i.e., all states have been fully
expanded)

…keep backtracking until we find a state
that is not fully expanded (i.e., all of its
enabled transitions have not been
explored); if it does not exist, then return
false (i.e., all states have been fully
expanded)

…get the enabled transformations…get the enabled transformations

…call the ISchedulingStrategist to pick
the next transition

…call the ISchedulingStrategist to pick
the next transition

…store the backtracking info necessary
for reversing the transition, and for
counter example generation

…store the backtracking info necessary
for reversing the transition, and for
counter example generation

…execute the transition and return true
to indicate a successful backtrack

…execute the transition and return true
to indicate a successful backtrack

Outline

Overview
DFS algorithm
Bogor components
Configuration
Initialization

DFS Stack
Search algorithm
Scheduler

Seen Before Set
State Manager

State Representation
Types & Values
Value Factory
State Factory

Architecture

ISearcher IStateMgr

ISchedulingStg

…customizable checking engine modules

Compact
Representation

Collapse
Compression

Symmetry
Reductions

Example
Instantiations

IBacktrackIF

ICounterExWr IProgressMgr

The IStateManager Module

Manages the “seen
before” states, how
states are stored and
matched

Manages the “seen
before” states, how
states are stored and
matched

Storing The State-space

seen := {s0}
stack := [s0]
DFS (s0)

DFS (s)
for each α ∈ enabled (s) do

s’ := α (s)
if s’ ∉ seen then

seen := seen ∪ {s’ }
push (stack, s’)
DFS (s’)
pop (stack)

end DFS

Seen Before Set

We need to store states
so we know when to
backtrack

We need to store states
so we know when to
backtrack

Used to keep track states that
have been visited before

storing the states
matching states

In explicit state model
checking, it is usually done by
linearizing states to bit-vectors

store the bit-vectors in a set
match each new state bit vector
against all stored ones

Usually the most
computationally expensive
module

linearization and state matching
takes some time
the number of states grow
exponentially wrt. the system’s
complexity

Seen Before Set

To ensure exhaustive exploration, we need to
preserve state equality, i.e.,

it should be able to generate the same bit-vector for
states whose variables and PCs values are the same,
and generate distinct bit-vectors for different ones

Otherwise:
we may match distinct states

the model checker backtracks earlier than it should
errors may be missed (but errors found are real errors!)

we may not match equivalent states
redundant exploration of states and transitions

s

[x->0,y->1,
pc1->0,pc2->2]

000001000010

Seen Before Set

For space efficiency, we
want to use the least
number of bits possible
to encode each value
In basic BIR, we only
have integer values,
thus

each state can be
represented by
appending bit-vectors of
variables and PCs values
we can compute the least
number of bits possible
from the type of each
value

[x->0,y->1,pc1->0,pc2->2]

s

000001000010

For each integral type, we need
⎡lg N ⎤ bits, where N is the number of
values the type can have, e.g.,

Each thread is represented by its program
counter

N is number of locations in the model
Each variable is represented by its value

for each range int type, N is max – min + 1
value x is represented as x + min using N bits

for int type, N is 232

for boolean type, N is 2

Value Linearization

Value Linearization —
Code Example

To linearize an int range type:
int value = …;
IntRangeType irt = …;
BitBuffer bb = …;

int highLimit = irt.getHighLimit();
int lowLimit = irt.getLowLimit();
int count = highLimit - lowLimit + 1;
bitLength = Util.widthInBits(count - 1);
value -= lowLimit;

bb.append(value, bitLength);
…

IStateManager

Used to keep track
states
Also assign a
unique number for
each stored state
(stateId)

use the number
instead of the
actual state in the
DFS stack

SimpleStateManager —
Code Example

To store a state, we need to linearize it, then
put it in a table that maps it to a unique integer:
public IStoreStateResult storeState(IState s) {
boolean seen = true;
int id = 0;
…
StaticByteArray o = linearize(s);
id = stateStateIdTable.get(o);

if (id == 0) {
id = nextStateId++;
stateStateIdTable.put(o, id);
seen = false;

}
return …

}

Assessment

Bogor architecture is highly modular
clean API using design patterns
customizable components allows easy
incorporation of targeted algorithms for
particular family of software artifacts

