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Abstract—Previous applications of symbolic execution (SYM-
EXE) have focused on bug-finding and test-case generation.
However, SYMEXE has the potential to significantly improve
usability and automation when applied to verification of soft-
ware contracts in safety-critical systems. Due to the lack of
support for processing software contracts and ad hoc approaches
for introducing a variety of over/under-approximations and
optimizations, most SYMEXE implementations cannot precisely
characterize the verification status of contracts. Moreover, these
tools do not provide explicit justifications for their conclusions,
and thus they are not aligned with trends toward evidence-
based verification and certification. We introduce the concept of
explicating symbolic execution (XSYMEXE) that builds on a strong
semantic foundation, supports full verification of rich software
contracts, explicitly tracks where over/under-approximations are
introduced or avoided, precisely characterizes the verification
status of each contractual claim, and associates each claim with
explications for its reported verification status. We report on case
studies in the use of Bakar Kiasan, our open source XSYMEXE
tool for SPARK ADA.

I. INTRODUCTION

Over the last decade, software engineering and formal
methods research has demonstrated that symbolic execution
(SYMEXE) [[1] can be an effective technique for automatically
checking wide-ranging properties of a program’s behavior with
little or no developer intervention. Previous applications of
SYMEXE have centered around detection of common faults
(such as null-pointer dereferencing, buffer overflows, array
bounds violations), and test case generation [2[|—[6].

SYMEXE tools aim to provide highly-automated and pre-
cise reasoning about program states by employing a variety
of approximating optimizations. Path sensitive analyses are
guided by heuristics that prune, or cutoff, certain paths. For
example, to reduce the burden on developers, in SYMEXE,
loop invariants are optional; instead, loops are (dynamically
& lazily) unrolled up to a developer-configurable bounded
depth. Rather than requiring complex “shape properties” for
data structures [7], [8] to be declared by developers, data
structures are explored up to a bounded size. Finally, rather
than requiring manual steps in a theorem prover, logical
constraints over program variables are solved by decision
procedures (DPs) that may return “don’t know” or time-
out after a developer-configured time bound. When these
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path cutoff optimizations occur they can cause SYMEXE to
compute an under-approximation of the program’s behavior;
thus, SYMEXE may fail to discover faults in a program that
occur beyond path cutoff points. On the other hand, programs
often contain data computations that lie outside the theories
handled by DPs and the typical strategy for dealing with such
cases can cause SYMEXE to introduce an over-approximation
of a portion of the program’s behavior, thus, it may report
“false alarms”.

While these approximations are effective for automation,
their impact on the coverage of a program’s state space and
the reporting of results of property checking cannot be easily
predicted. At a more fundamental level, the unconstrained and
unmonitored use of these optimizations means that developers
cannot trust the tool to yield a definitive report of the correct-
ness of assertions or other program properties.

In contrast to the emphasis on bug-finding for predefined
properties and faults outlined above, we are interested in the
verification of developer-supplied contracts that specify full
functional correctness. While software contract checking is
useful in many contexts, we are interested primarily in its
application in the development of safety-critical software.

Unfortunately, our experience in several industrial collabo-
rations with companies such as Rockwell Collins, who produce
certified safety and security critical software, has shown that
current tools for contract checking place too great a burden
on developers. For example, the SPARK language and tool
framework [9] is one of the premier commercial development
frameworks for high-assurance software. SPARK has been
used to develop a number of safety/security-critical systems.
Even though SPARK and its static analysis components are
beneficial and easy to use, its contract language is rarely
used due to the burdens the associated tools and methodology
impose on developers. In fact, we are not aware of any
industrial development effort that makes significant use of
the SPARK pre/post-condition notation other than to specify
enough context information for procedures to enable absence
of run-time errors to be proved.

We believe that a more foundational approach to SYMEXE
can significantly improve the usability and effectiveness of
contract checking tools by providing a completely automated
lazy bounded verification technology that scales to very
complex contracts. Our vision is that the highly automated
nature of SYMEXE would allow developers to apply contract



checking early in the development process with very little
effort. We believe that in many cases, SYMEXE can provide
complete verification that code conforms to contracts.

In cases where complete verification is not achieved,
bounded SYMEXE-based checking can lead to the detection
and removal of the vast majority of functional flaws in code
and contracts. Moreover, SYMEXE can provide a variety of
forms of semantic visualizations, test generation, efc., that
can help developers better understand their code, enable more
rapid development of contracts, and provide evidence that
significantly increases confidence in program correctness.

Our aim is not to replace, e.g., the SPARK Examiner—
SPARK’s verification condition generation (VCGen)-based
tool—but to complement it by offering highly automated
developer-friendly techniques that can be used directly in
the code (specify) / test (check) / debug (understanding
feedback) loop of typical developer workflows. Our vision
includes providing tool reports that clearly distinguish between
contracts that have been proven by SYMEXE from those
with remaining proof obligations. Contracts with undischarged
proof obligations would be handed off later in the development
process to verification engineers who apply less automated
tools and proof assistants.

To achieve this vision, we have developed a novel approach
to SYMEXE for software contract checking. We call this ap-
proach explicating symbolic execution (XSYMEXE) because it
is designed from the ground up to have robust semantic under-
pinnings and to produce explicit explanations and justifications
about the verification status of each of developer-supplied
claim in a program. We make the following contributions:

« Introduce the concept of XSYMEXE as the foundation of
an evidence-based framework for justifying the verifica-
tion status of software contracts checked by SYMEXE,
and explain the basic algorithms of XSYMEXE used
to explicitly track when under/over-approximations are
introduced (Sections & [V).

« Provide rigorous mathematical definitions for the basic
principles of XSYMEXE including notions of soundness
that justify the developer interpretation of verification
results of SYMEXE when applied to software contracts
(Sections & [IV).

o Implement XSYMEXE in the open source Bakar Ki-
asan (Kiasan for short) symbolic execution tool for
SPARK ADA.

o Summarize the results of publicly available case studies
and related artifacts on applying Kiasan to a variety of
SPARK examples (Section [VI).

This work was motivated by collaborations with engineers
at Rockwell Collins and knowledge of how SPARK is being
used in Rockwell Collins’ security critical projects. We are
currently collaborating with AdaCore and Altran Praxis to
integrate this technology into their next version of SPARK.
Although we illustrate our techniques in the context of SPARK,
we believe that the concepts can easily be adapted to other
tools, working on different languages, such as the Symbolic
Path Finder (SPF) [10] and Klee [6]].

II. BACKGROUND

In this paper, we are concerned with XSYMEXE for contract-
based languages like SPARK ADA. We will use the term claim
to be a contract pre-, or post-condition, or inline assert state-
ments and their specialized forms (such as loop invariants).

A. Evidence-based Verif.: Conventional SYMEXE Shortfalls

We carefully illustrate here the ways in which SYMEXE
can lead to uncertainty in the verification status of claims
while pointing out how XSYMEXE can offer clarity in the
conclusions that can be drawn. Examples are in SPARK and
the essence of the notation is explained as we go along.

Issue: Under-approximation due to bound (or selective
search) cutoffs may mask program faults, one of the more
obvious limitations of bounded SYMEXE, is illustrated in Fig-
ure where an array is used to implement a queue of Size
elements. SPARK’s contract notation is fairly conventional and
should be easy to interpret once one knows that occurrences
of E~ in a post-condition refers to pre-state values of E.
Execution of this procedure will result in an implicit claim
violation due to the array index being out of range in the
expression A(K + 1) at Line The Ada standard mandates
several kinds of implicit claims like these. The source of the
problem is the upper bound of the for loop: it should be
Size - 1. When a conventional implementation of SYMEXE
is invoked with a loop bound less than Size, then no contract
violation is reported because the last iteration of the loop (in
which K is equal to Size) is never reached due to the path
cutoff from the loop bound exhaustion.

Solution: Because XSYMEXE precisely tracks: (1) when
bound exhaustion leads to path cutoffs, and (2) the implicit
and explicit claims whose checking may be bypassed due to
those particular cutoffs, Kiasan reports that the implicit range
claim at Line is VERIFIED’. In Kiasan, we consistently
use “?” as an “inconclusiveness” qualifier, read as “maybe”.
Kiasan also provides an explication that enumerates all the
program points in which SYMEXE bound exhaustion occurred
which may prevent the full evaluation of the claim.

Issue: Cutoffs in assumption statements, a precondition
in the case illustrated in Figure can lead to over-
approximation and false alarms. The procedure contract is
actually valid, but the over-approximation introduces a false
alarm as we explain next. Consider SYMEXE of this example
with a loop bound of 4 and an array bound of 5. SYMEXE
begins at the precondition. Since the precondition’s universal
quantifier is (symbolically) executed as a loop, and since
Size can take on the value 5, its evaluation will lead to
a symbolic state in which A(K) /= EMPTY for K = 1.4,
but will leave A(5) unconstrained since the last iteration of
the (quantifier) loop is cutoff due to loop bound exhaustion[]
SYMEXE continues with the evaluation of the procedure body
using (simplifying slightly) a symbolic state built out of the

I Terminating the analysis at cutoff points in assumptions would cause the
subsequent code/claims to be unanalyzed. In contrast, any claim verified under
an over-approximating assumption, is satisfied in any concrete execution.



(a) VERIFIED® (read inconclusiveness qualifier “?" as “maybe”; i.e., “maybe
VERIFIED") due to under-approx. caused by bounding. Claim is actually invalid.

subtype Index is Integer range 1..5;
type Vector is array (Index) of Integer;
EMPTY : constant := O0;

5

procedure dequeue(A : in out Vector;

Size in out Integer; R : out Integer)
—# pre (for all K in Index range Index First..Size =>
—# (A(K) /= EMPTY)) and
0 —# Index ' First <= Size and Size <= Index ’Last;

—# post (for all K in Index range Index First..Size =>

—# (A(K) /= EMPTY)) and
—# R = A~(Index ’First) and A(Size~) = EMPTY and
—# Size = Size~ — 1 and
15 —# (for all K in Index range Index’First.. Size =>
—# (A(K) = A~(K + 1)));
is begin

R := A(Index’ First);
for K in Index range Index’ First.. Size
20 loop A(K) := A(K + 1); end loop;
A(Size) := EMPTY; Size := Size — 1;
end dequeue;

(b) False alarm: REFUTED® (read “maybe REFUTED”) claim, that is actually valid,
due to bound exhaustion in assumption (precondition) causing over-approx.
procedure dequeue_fixed(...) — contract same as dequeue
25 is begin
R := A(Index’ First);
for K in Index range Index’ First..Size — 1
loop A(K) := A(K + 1); end loop;
— rest of body like dequeue
30

(c) False alarm: INDETERMINATE claim, reported (due to unhandled theory

over-approximation) but claim is actually valid.

procedure FAIT(I, J Integer; R, K, Q : out Integer)
—# pre I >= —10 and 1 <= —1 and J >= 1 and J <= 10;
—# post Q >= —99 and Q <= 0;

is begin R := 1 %xJ; K :=R + I; Q := K; end FAIT;

Fig. 1. Examples used to contrast conventional SYMEXE and

state at the cutoff point. Thus, on the fourth evaluation of
Line 28] the unconstrained value of A(5) gets copied into A(4).
Being unconstrained, this value can be EMPTY and hence,
subsequent evaluation of the post-condition results in a claim
violation because the first quantifier’s body (namely, A(K) /=
EMPTY) is FALSE when K is 4.

Solution: XSYMEXE precisely tracks when over-approxima-
tion is introduced, during the evaluation of an assume state-
ment (such as a precondition), due to bound cutoffs, Kiasan
qualifies that the postcondition is REFUTED’. It justifies the
“?’ qualification with an explication consisting of: (1) the
assumption expression context where over-approximation was
introduced, and (2) a counter-example in support of the claim
violation. Of course, due to over-approximation, the counter-
example may not satisfy the (full) precondition.

Issue: False alarm from over-approximation due to unhan-
dled theories is illustrated in Figure where the procedure
contract is correct, but (conventional) SYMEXE would report
a violation of the post-condition (Line as we explain
next. While the precondition sufficiently constrains the values
of | and J to ensure that Q is in the stated range in the
post-condition, the multiplication | * J at Line [34] introduces
non-linear arithmetic which, at best, is partially handled, and
generally completely unhandled, by many DP. (While integer
non-linear arithmetic is used in this example, there are other
theories that are undecidable/unsupported by even the most
advanced DPs—e.g., floating point, unbounded strings.) A

35 (d) UNCOVERED claim at Lineif the loop bound is less than 5.
procedure B (K : Integer; R : out Integer) is begin

R := 0;
for J in Integer range 1..5 loop R := R + K; end loop;
—# assert PI(K, R);

4 end B;

(e) DEAD claim and code since the product of 2 naturals cannot be negative.

procedure DeadEx(J, K : Natural; R : out Integer) is
begin
R = J % K;

45 if (R < 0) then
—# assert P2(J, K, R);
R := 0;
end if;
end DeadEx;
50

(f) FAuLTY postcondition as it yields an array index out of bounds violation.
procedure InsertionSort (A : in out Vector)

—# post for all K in Index => (A(K) <= A(K + 1));
— details of body elided for brevity.

(9) VERIFIED claim (fully verified). No bound exhaustion or unhanded theories.
55 procedure shift(n : Index; A : in out Vector)
—# post for all K in Index range 1..n—1 =>

—# (A(K) = A~(K+1));
is begin
for K in Index range Index’ First + 1 .. n
60 loop A(K— 1) := A(K); end loop;
end shift;

(h) REFUTED claim (post-condition).
procedure swap(A : in out Vector; J, K :
—# post A(K) = A~(J) and A(J) = A~(K);

in Index)

65 is T : Integer; begin
T := AKK); A(J) := AK); A(K) := T;
end swap;

XSYMEXE (excerpt, e.g., SPARK derive clauses are elided)

common SYMEXE strategy in such situations is to introduce
uninterpreted functions (abstracting away sub-expressions over
unhandled theories) along with basic axioms over them—e.g.,
for multiplication: a non-negative number multiplied by a non-
negative number yields a non-negative number. This introduces
an over-approximation which, for this example, would lead a
conventional SYMEXE tool to wrongly conclude that the post-
condition can be violated.

Solution: XSYMEXE precisely tracks over-approximation for
unhandled theories due to the use of uninterpreted functions.
In addition, Kiasan can determine if a claim status depends
on such uninterpreted functions (e.g., via a form of data
and control dependency analysis [11]) and if it does, Kiasan
reports the status as INDETERMINATE, indicating that evidence
cannot be generated to refute the claim and that, as opposed
to the example in Figure [I{b)] re-running XSYMEXE with
higher bounds will do nothing to help. In situations where
uninterpreted functions are introduced and a particular claim
violation does not depend on them, then Kiasan can conclude
that the claim is REFUTED.

Issue: Uncovered claims. Naive approaches to SYMEXE
simply report when a claim is (possibly) violated. In these
approaches, the absence of a claim violation could lead the
developer to incorrectly conclude that a claim can never be
violated. However, it is possible that the bounding strategy
used by SYMEXE has simply cutoff some paths—creating
an under-approximation that misses evaluating the claims.



For example, when SYMEXE is applied to the example of
Figure with a loop bound of 4, the last iteration of the
loop will never be executed, the path to the claim at Line [39]
will be cutoff, and nothing will be reported about this claim.

Solution: Kiasan reports this claim as UNCOVERED, and it
produces explications that includes bound cutoffs that may be
blocking the execution of the claim along with paths from the
bound cutoff points to the uncovered assertion.

Issue: Distinguishing dead from uncovered code/claims.
Some claims lie along paths for which no concrete execution
exists. Even if code coverage is used, conventional SYMEXE
algorithms cannot distinguish between claims and code that
are uncovered due to cutoffs (as in Figure [[{d)) from claims
or code that are semantically unreachable (as in Figure [I(e)).

Solution: Because XSYMEXE tracks where paths are cutoff
due to bound exhaustion, Kiasan can identify claims and code
that are semantically unreachable from claims and code that
are merely uncovered. (While the example in Figure
uses non-linear arithmetic, because of the basic axiom added
on non-negative multiplications mentioned previously, Kiasan
can conclude that the claim and code are dead.) A claim or
code is reported as DEAD if it is uncovered and there are no
bound cutoffs along SYMEXE paths from which the code in
question is reachable in the procedure control flow graph. Dead
code detection is important for critical embedded systems. In
fact, in some sectors such as avionics, dead code must be
removed to comply with, e.g., DO-178C. Many dead code
detection approaches rely on data flow frameworks or syntactic
detection; our approach is more powerful (potentially detecting
more dead code and generates less number of false alarms)
because it considers infeasible path conditions.

Issue: Undefinedness (exceptions) during claim evaluation.
Because claims are built from programming language expres-
sions, their evaluation can lead to run-time exceptions. Such
claims are “faulty” because their evaluation in a particular state
may not return a definite truth value. Figure [I{f)] illustrates
a faulty contract with a post-condition that will generate a
range check violation at A(K+1). It is important for developers
to understand when their claims are faulty because no useful
verification conclusions can be drawn from them; eliminating
such exceptions from claims should be one of the first tasks
in a contract-based quality assurance methodology.

Solution: Because XSYMEXE: (1) decomposes each contract
into primitive claims, and (2) tracks the verification status
of both explicit and implicit claims, Kiasan reports that the
contract of Figure [I[f)]is FAULTY. To explain why the contract
is FAULTY, it also provides an explication listing implicit
claims (runtime checks) in the contract, and a counterexample
for such claims that are REFUTED.

Issue: Is a verified claim really verified? Conventional SYM-
EXE applied to Figure [I{g)] may report no violations and offer
no clear indication of the actual claim status. Has the post-
condition been exhaustively validated for all possible states?

Solution: In analyzing this example, Kiasan relies only on
the manipulation of logic constraints that are (completely)
supported in the theories of the underlying DP and does not
give rise to under-approximations due to bounding as long
as the loop and array bounds are greater than Index’Last. If
the latter is not true, then VERIFIED® is reported, hinting to
the developer that an increase in the loop and array bounds
might enable XSYMEXE to report that the contract has been
unequivocally VERIFIED, which is the case for this example.
Note that no loop invariant is needed to verify the example.

Issue: Is a refuted claim really refuted? As was alluded to
earlier, a common pitfall of static analyses is that they produce
too many false alarms that negatively impact one’s ability
to correct true claim violations. Many SYMEXE tools: (1)
introduce over-approximations that can lead to false alarms,
and (2) do not precisely track when such approximations
have been introduced. Thus, they are unable to distinguish
a potential false alarm from an actual claim violation.

Solution: Kiasan does not introduce any over-approximations
when run on the example of Figure [T{h)] Because XSYMEXE
precisely tracks when over-approximations are introduced,
Kiasan is able to report that the claim represented by this
contract can be REFUTED. Moreover, it yields an explication
in the form of a concrete test case and counter-example:
e.g., a pre-state having J=2, K=1, A(J)=1, A(K)=0 that leads
to violation of the postcondition—the bug is that the first
assignment’s right-hand side should be A(J).

B. SYMEXE: Basic Formalization

In this section, we present a basic formalization of SYMEXE,
giving enough mathematical machinery to enable us to rigor-
ously explain claim reporting and its associated semantics.

1) Procedures and Commands: Without loss of generality,
we focus our technical definitions on procedural units and
execution states for those units that include bindings of the
procedure’s local variables, parameters, and global variables
that are either read or written by the procedure. We will
assume (unless stated otherwise), that our formal definitions
given below apply to the context of a given procedure P.

As is commonly done in works formalizing program cor-
rectness for imperative languages, we assume that our core
command language includes the basic assume and assert
statements which are used, in particular, to encode the pre-
and post-conditions of procedure contracts. Execution of an
assert statement whose expression evaluates to true, has no
effect, otherwise, the procedure’s execution is said to terminate
in error. Similarly, execution of an assume statement whose
expression evaluates to true, has no effect, otherwise, the pro-
cedure’s execution is said to terminate due to infeasibility [12].
For simplicity, procedure contracts are embedded in the pro-
cedure’s code as assume (e.g., precondition) and assert (e.g.,
postcondition) statements via program transformation [|13]].

2) Concrete and Symbolic Stores: A store is a finite partial
function relating variables (Var) to their values. A concrete
store, c€ € Var — Valuec, associates variables to concrete



values Value®. Since symbolic execution manipulates both
Value® and symbolic values, we define a symbolic store
oS € Var — ValueS, where Value® - Value®.

3) Concrete and Symbolic States: A concrete state s
(I, ¢%) is a pair consisting of a program point (also called
a label) [ and a concrete store o€, where intuitively, o€
represents the value of the program variables immediately
before the command at [ is executed. We say that s€ is a
state for 1. Similarly, a symbolic state s° = (I, 0%, ¢, g)
is a tuple consisting of: a program point, a symbolic store, a
path condition ¢, consisting of a finite set of formulae that act
as constraints on symbolic values in the store, and a status
flag used to indicate, among other things, whether a state
is “normal” or “potentially over-approximating” (explained
further below). We also say that s° is a state for [.

Let Zg and Eg denote the concrete and symbolic state sets
of the procedure P, respectively. When referring to state sets
generically, we shall omit the P qualifier on the name.

4) Concrete Execution: A concrete path 7€ = sf, sg e
for procedure P is a possibly infinite sequence of one or more
concrete states representing the states generated by executing
commands in P from the initial state sf. Similar to [12f], we
have each finite path 7€ for P end in a final state s¢ having a
special label I, € {NORMAL, ERROR, INFEASIBLE} denoting
the path termination status. An INFEASIBLE state results from
an assume statement’s expression evaluating to false. Assume
statements are used, e.g., to encode preconditions. We let Hg
denote the set of all possible concrete paths in P. The program
point [ in P is said to be reachable iff there exists a path in II§
containing a state for [; otherwise it is said to be unreachable
or dead.

5) Symbolic Execution: A symbolic path w
$%,...,85 € I for procedure P is a sequence of
one or more symbolic states representing the states generated
by symbolically executing commands in P from the initial
state s7. Unlike concrete paths, symbolic paths are not
required to end in a state for one of the special terminal
labels. This models the fact that a symbolic path may be
partial due to a SYMEXE bounds cutoffs, e.g., array, loop,
or call-chain bounds. For simplicity, we often refer to
user-configurable analysis bounds (e.g., loop bound, bounding
on arrays, timeout) simply as “bounding”. We call a symbolic
path complete iff it ends in a state for one of the special
terminal labels, and it is termed incomplete otherwise.

6) Soundness: Since we use s £S s
SYMEXE for formal verification as S5 —> 52
opposed to just bug finding, we
define a binary simulation rela- 4 4
tion (<) [14] relating concrete and
symbolic states such that s¢ < s c e c
when sS over-approximates (ab- S ———=> 52
stracts or simulates) s¢. A sym- Fig. 2. Commutativity of Con-
bolic state and the concrete states !¢ Execution and SYMEXE
that it abstracts, always agree on their program point. A
concrete path 7€ = s§,sS ... is over-approximated by a

symbolic path 75 = s¥ ..., 55, on its first n > 1 states,

C:

S =

denoted 7€ & 7S, iff 7€ is at least of length n and s¢ as?

for all 1 < i < n. When 7€ and 7 are both of length n and
7€ & xS , then we simply write 7€ < 75. SYMEXE is sound
iff Figure 2] commutes, where a step of concrete/symbolic

execution is denoted by £C, £, respectively.

III. CLAIMS

We address the checking of developer claims written in a
formal specification language that state desired properties of
programs written in a particular programming language. Sev-
eral approaches have been proposed for interpreting claims. In
the mathematical interpretation approach taken in languages
such as the current version of SPARK [9]], claims are viewed as
pure logical formula whose evaluation completes in a single
step yielding either true or false as a result.

In this work, we adopt the executable interpretation ap-
proach [[15] to align with the semantics of specifications to
be used in the next generation of SPARK based on Ada 2012.
In the executable approach, claims are decomposed to atomic
boolean expressions in the programming language. Interpret-
ing a claim amounts to executing the boolean expressions
to which it decomposes. Thus, claim evaluation does not in
general proceed in a single atomic step; it may have the
possibility of terminating abnormally due to ill-formed sub-
expressions (array accesses with out-of-bound indices, divide-
by-zero errors, etc.), a.k.a., undefinedness [[15]], as illustrated in
Figure In the subsequent subsections, we give a top-down
description of concrete and symbolic evaluation of claims—
beginning first with the developer’s view of claim evaluation
and then drilling down to the details of claim decomposition.

A. Concrete Evaluation of Claims

Because SYMEXE is a path-sensitive analysis, we first
address the evaluation of a claim at a particular state along
a path and then derive the semantics of a claim by summariz-
ing across all paths. Whenever the command at a program
point [ is a claim in the form of an assert or assume
statement, we use C! to denote the claim at [. We define
CHECKCLAIM® (s€,C!) : BooL, to be a function, return-
ing either TRUE, FALSE or UNDEFINED, that represents the
concrete evaluation of C! in concrete state s¢ whose program
point is I. (Since s¢ is a state for I, providing C' as a
second argument is unnecessary, but including it provides
uniformity in the arguments of the semantic functions defined
later.) To build towards the developer’s intuitive understand-
ing of the meaning of C! across a set of executions IIC,
we define the concrete collecting summary of C!, denoted
COLLECTCLAIMS (TI€, C) : P (BOOL ), as the union of all
possible concrete execution results of C! across all paths in
II¢.

The concrete interpretation of a claim is the conclusion
that a developer can draw about C' based on its concrete
behavior across all executions in TI¢; INTERPCLAIME (TIC, C!)
is defined as follows:

(D) DEAD iff COLLECTCLAIM®(TI®,C") = 0, ie, C' never
appears in the paths II¢ (it is unreachable).



(V) VERIFIED iff COLLECTCLAIMS (ITI¢, C!) = {TRUE}, i.e., C' is
reachable and is TRUE in all states in which it is encountered.

(R) REFUTED when FALSE € COLLECTCLAIME (II€, CY), i.e., C!
is reachable and is FALSE on at least one path.

(F) otherwise, when
UNDEFINED € COLLECTCLAIME (IT€, C), i.e., C! is reachable
and is UNDEFINED on at least one path.

In those situations above where more than one “when” case

holds true then the first case is chosen.

B. Symbolic Evaluation of Claims

1) Symbolic Claim Check: Let CHECKCLAIM® (s5,C!) :
BOOL1 be the result of symbolically evaluating the claim c!
in the symbolic state sS (for Cl), where BOOL?l = BooL; U
{DONTKNOW, FALSE’, UNDEFINED" }. While this function is
generally implemented by a call to a decision procedure (DP),
preprocessing and optimization steps may be applied before
and/or instead of calling the DP. Details will be given in
Section and as will be explained there, DONTKNOW
represents the situation where the decision procedure itself
returns “don’t know” or when a particular theory used in the
primitive assertion is not supported by the decision procedure.
FALSE’ and UNDEFINED’, read as “maybe false” and “maybe
undefined”, will be explained in Section after the
introduction of some essential terminology.

2) SYMEXE Bound Exhaustion and Cutoff Paths: As ex-
plained in Section [[IL in bounded SYMEXE, some symbolic
paths are terminated prematurely due to bound exhaustion. We
refer to these as cutoff paths, which are instances of incomplete
paths mentioned in Section We say that Clis impacted
by the cutoff path 7° of length n terminating in a state s& iff
there exists a concrete path 7€ containing a state sic for C!,
where ¢ > n, for which ¢ & 7S, Intuitively, a claim that is
impacted by a cutoff causes inconclusiveness in the analysis
results due to the cutoff, because there are behaviors that are
not analyzed that might affect the claim’s status.

The detection of the potential impact of a claim c! by a
cutoff can be seen as a reachability problem since a cutoff
at a program point /,, could prevent the flow of control from
continuing to C!. We define a conservative approximation of
cutoff impacts using a Control Flow Graph (CFG) as follows.
Let 5 be a cutoff path, then we say that Cl s potentially
impacted by 7°, and write Ccl e CUTOFFIMPACTS(’/TS), iff
C! can be reached from [, (the program point of the final
state in 7°) in the CFG. (A more precise CUTOFFIMPACTS
can be defined using control and data dependencies instead of
CFG reachability; we opt to use CFG here for simplicity.)

3) SYMEXE Bound Exhaustion in Assume Contexts: A
SYMEXE bound exhaustion results in a cutoff in every execu-
tion context except that of an assume statement, in which case
the assume expression evaluation is stopped (and the symbolic
constraints accumulated up until that point are preserved); in
such cases, the Boolean sub-expression is assigned a non-
deterministic value and SYMEXE continues to the sibling
Boolean sub-expression of the assume statement, if any (oth-
erwise, SYMEXE continues to the next statement). Because
a non-deterministic value is introduced, the symbolic state

status flag g described in Section [[[-B| is set to indicate
that the state (and all its successors) are potentially over-
approximating. This is how the over-approximation discussed
for the example of Figure [I[b)] is tracked. In general, over-
approximation may result in false alarms, but the alternative
is to halt the exploration of the path — which would typically
give less feedback to developers about the remaining procedure
code and contract clauses. We can now clarify that the pre-
viously mentioned CHECKCLAIM® (55, C!) outputs FALSE’
and UNDEFINED’ represent the situations where the DP yields
FALSE or UNDEFINED (respectively), but that s° is flagged
as potentially over-approximating (due to a bound exhaustion
taking place during the symbolic evaluation of an assume
statement at some point earlier in the path).

4) Collecting Summary: Analogous to the concrete case,
we define the symbolic collecting summary of C', denoted
CoLLECTCLAIM® (IT%,C') : P (BooL’ U {CuToFF}), as
the union of: 1) all symbolic execution results of !
across all paths in II® as reported by CHECKCLAIM®, and
2) {CUTOFF}, if C' can be potentially impacted by a cutoff
path in TIS.

5) Symbolic Interpretation: We now define the symbolic
interpretation of Cl to represent the conclusions that a devel-
oper can draw about this claim from the results of SYMEXE.
INTERPCLAIM® (1T, C') is defined as follows:

(D) DEAD iff CoLLECTCLAIMS (IT°,CY) = 0.

(V) VERIFIED iff COLLECTCLAIMS (I1°,C!) = {TRUE}.

(R) REFUTED when FALSE € COLLECTCLAIM® (IT, CQ'

(F) FAULTY when UNDEFINED € COLLECTCLAIMS (IT%, C).
(R?) REFUTED® when FALSE’ € CoLLECTCLAIM® (ITS
(F?) FAULTY® when UNDEFINED® € COLLECTCLAIM®

(U) UNCOVERED iff COLLECTCLAIM® (IT¢,C") = {CUTOFF}.
(v?) VERIFIED iff

CoLLECTCLAIM® (TT%,C") = {TRUE, CUTOFF}.

(I) INDETERMINATE otherwise.

,CH.
(H%Cl).

As before, when more than one “when” case occurs in the
interpretation of the above, the first case is taken as defining.

IV. PRIMITIVE CLAIMS AND THEIR SEMANTICS

Thus far, we have explained the semantics of claims from a
developer’s perspective. In this section, we describe how the
concrete and symbolic CHECKCLAIM methods are realized.

A. Primitive Claims and Classical DPs

Programmers have a natural intuitive understanding of the
execution of a claim expression yielding either TRUE, FALSE
or, in situations where execution cannot terminate normally
(e.g., due to an exception) UNDEFINED. This leads to logical
formula over a 3-valued logic [15]. Almost all DPs operate
over theories expressed in classical 2-valued logic. Hence, we
adopt an approach that we developed earlier for use in the
Java Modeling Language [15] and explained next.

Generally speaking, a developer claim C consists of n
primitive claims A;, for 1 <7 < n. We use the term defining
primitive claim (A) to refer to A,, (the primitive claim that de-
fines the logical meaning of the developer claim after all sub-
expressions have been evaluated), and supporting primitive
claims (A;) (e.g., array bounds checks and other range checks



required by Ada on sub-expressions in the developer claim) to
mean an A;, for 1 < i < n. Due to the lack of space, we omit
the full details of how a composite claim is decomposed into
primitive claims. We do note here that supporting primitive
claims are generated, among other reasons, to encode (2-
valued) conditions whose truth will guarantee that evaluation
of the “rest” of the claim will not result in UNDEFINED—e.g.,
a claim expression involving division will have a supporting
primitive claim asserting that the divisor is not zero.

B. CHECKPRIM® and Decision Procedure

The checking of the developer claim via CHECKCLAIMS is
defined in terms of the more elementary CHECKPRIM®, which
is applied to constituent primitive claims. CHECKPRIM® is
in turn defined via calls to a decision procedure. We now
explain how CHECKPRIMS(SS,A) can return TRUE, FALSE,
DONTKNOW, or FALSE.

Consider the case where SYMEXE reaches a primitive claim
A on a state s5. In CHECKPRIM® (s5, A), we are interested
in determining validity of A under s5. Typically, this is
implemented as a call to a decision procedure such as a
Satisfiability Modulo Theory (SMT) solver like, e.g., Z3 [16]
and Yices [17]. SMT solvers do not directly tell us if an
assertion is valid since they are designed to check satisfiability
of a formula instead of the formula’s validity. We abstract the
means by which we determine validity through satisfiability
checkers behind an interface we call DPt, which returns
TRUE, FALSE, DONTKNOW.

We require DP™ to be sound; that is, it may at most intro-
duce over-approximation (possibly generating false alarms),
but not under-approximation (which could result in missed
detection of “bugs”). Claim expressions over undecidable
theories are the main reason for over-approximation, and un-
fortunately, most interesting programs deal with theories that
are undecidable (e.g., non-linear arithmetic and unbounded
string theories). In such cases, a DPT may not be able to
give a definite answer; that is, it may give up producing an
answer when it tries to reason about state constraints involving
undecidable theories and hence return DONTKNOW.

We design our tool to work with multiple SMT solvers,
but this is complicated by the fact that the solvers differ in
their reasoning strengths and/or the theories that they (directly)
support. For example, Yices has no support for non-linear
arithmetic, while Z3 tries its best to conservatively solve
non-linear arithmetic constraints; neither supports theories of
unbounded strings or floating point numbers. The typical
workaround for constraints involving theories not supported by
the underlying solver is to weaken such constraints by using
uninterpreted functions. While this approach is sound, it leads
to over-approximation.

Thus, to distinguish conclusive results, we design
CHECKPRIM® (55, A) to return TRUE only if the claim is valid
(provably true), FALSE only if the claim is invalid (provably
false). CHECKPRIM® can achieve this by a post-processing
step after calls to DPt as follows. Let UT(s5,A) returns
true iff s5 or A contain terms from unhandled theories. If

DP* (5%, A) = FALSE, then CHECKPRIM®: returns FALSE,
if ﬂUT(s‘S,A); otherwise, DONTKNOW. A naive UT can be
defined as: the path condition in s° and the constraint in A
involves weakening for unhandled theory. If DPT answers
TRUE or DONTKNOW, the answer is directly returned by
CHECKPRIM® regardless whether the constraint involves un-
handled theory.

Note that this naive UT may sometimes be overly conser-
vative, but can be improved. For example, when using Yices
where non-linear arithmetic is unsupported, one can “emulate”
multiplication by using an uninterpreted function, but with,
e.g., the following sign axiom: multiplication of non-negative
numbers yields a non-negative number. In certain cases where
such axiom applies, DP' can give a definite answer. This
can be detected by further queries to the underlying solver.
Moreover, UT can be refined further by using a cone of
influence (data dependence) analysis and control dependence
analysis (See the technical report version of this paper for
more discussion [[18]].)

In Section [[II-B3] we described that we may have an over-
approximation while evaluating an assumption. In such case,
if the DPT returns FALSE, it maybe a false alarm introduced
by the over-approximation. Thus, to distinguish this case with
the case where we can conclusively determine that the as-
sertion is provably invalid, CHECKPRIM® examines the over-
approximating flag g in s%; it returns FALSE’ when g is set,
which indicates there was an assumption over-approximation
along the path. A test case can be generated to try to convert
FALSE’ to FALSE; that is, if the test case execution refines
the symbolic path (a witness that refutes the claim), then
CHECKPRIM® should return FALSE.

Due to the lack of space, we omit the definitions of
COLLECTPRIM® (ITS, A') and INTERPPRIM® (IS, A!) since
they are quite similar to those for developer claims.

C. CHECKCLAIM®

Finally, we can explain how symbolic claim checking is
defined in terms of its constituent primitive claims. Thus, for a
claim A, CHECKCLAIM® (s%,C) : BooL! (where BooL) =
BooL, U {DONTKNOW, FALSE’, UNDEFINED}) is defined
in terms of the primitive claims of C and CHECKPRIM®
(whose return values are TRUE, FALSE, DONTKNOW and
FALSE’) as follows:

« UNDEFINED when CHECKPRIM® (s°, A;) = FALSE, for any

supporting assertion As.

o UNDEFINED’ when CHECKPRIM® (5% A;) = FALSE’, for
any supporting assertion As.
o DONTKNOW when CHECKPRIM® (5%, A;) = DONTKNOW,

for any As.
o The value of CHECKPRIM® (s°, A4) when
CHECKPRIM® (5%, A,) = TRUE for all A,.
Again, when more than one “when” case occurs in the
interpretation of the above, the first case is chosen.

V. CLAIM EXPLICATION

The main goals of XSYMEXE are to be more precise about
the conclusiveness of contract checking results and to pro-
vide informative evidence for each of the results. XSYMEXE



explications are multi-tiered so that developers can see an
initial explication for a developer claim status and then drill
down through multiple levels of abstraction for more details—
including results of claim checking on individual paths as well
as results for the primitive claims that make up a developer
claim. Explications for both developer and primitive claims are
organized according to the set of status results obtained when
collecting the results of claim evaluation across all paths. For
example, the top-level report may indicate that a developer
claim is REFUTED in a situation where the claim’s defining
primitive claim is FALSE along some paths and TRUE along
other paths. In this case, explication drill-down yields two
categories of explications (one for the TRUE paths and one
for the FALSE paths). Drill-down through the TRUE category
produces a collection of concrete and symbolic paths for when
the primitive claim is TRUE (similarly for the FALSE case).

The table below describes the nature of the explications for
each status category that can be returned by COLLECTPRIM®.

Collect category | Explication

FALSE c/s-counter-examples, program location
TRUE c/s-path

CUTOFF partial c/s-path, cutoff-location, path chop
DoNTKNOW s-path, unhandled theory program locations
FALSE’ c/s-counter-example, over-approx. location

FALSE: To illustrate an assertion refutation, it is sufficient to
generate a counter-example demonstrating that the assertion
does not hold under a certain circumstance. It is also helpful
to highlight the assertion’s source-level program location (re-
gion); this is especially valuable for identifying the source of
undefinedness of a claim’s supporting assertion.

TRUE: As an evidence of an assertion verification, it is useful
to generate a (concrete/symbolic) c/s-path (or a test case)
demonstrating that the assertion holds.

CuToFF: To illustrate an assertion impacted by a cutoff,
we generate a partial c/s-path demonstrating the program
execution leading to the cutoff point; this is coupled with
generating a possible path (chop) description/visualization
illustrating how program control can transfer from the cutoff
program location to the assertion.

DONTKNOW: We can output a symbolic path to illustrate an
assertion whose validity cannot be determined; unfortunately,
due to the unhandled theory issue described in Section [[V-B|
it may not always possible to generate a concrete path. Thus,
we can only guarantee to output a symbolic path. Hence, it
is helpful to also highlight program points that give rise to
constraints with unhandled theory.

FALSE’: Recall that FALSE’ can only happen when there is
an assumption over-approximation impacting an assertion that
is refuted (under that over-approximating assumption). Thus,
we can generate c/s-counter-examples illustrating the assertion
refutation. As mentioned previously, the counter-examples
may not fully satisfy the assumption. Thus, it is helpful to
also highlight the program point where the assumption over-
approximation occurred.

VI. EVALUATION

To evaluate our approach, we implemented XSYMEXE in
Bakar Kiasan and applied it to an extended set of examples
including the examples of Section [I-A] standard sorting
algorithms used for benchmarking, and representatives of
data structures used to maintain data packet filtering and
transformation in embedded security applications. The latter
set is derived from a Rockwell Collins code base and uses
arrays to provide a “linked list” set implementation (where
links are represented as indices in an auxiliary array) with
more efficient additions/deletions. These units are relatively
small but generally have rich behavioral contracts since we
focus on compositional verification of strong behavioral prop-
erties instead of (selective-search) whole program bug-finding.
Note that many programs in safety/security-critical embedded
applications are relatively small in size.

Bakar Kiasan summarizes the developer claim statuses on a
per routine basis, as well as the individual statuses of primitive
and defining claims in each developer claim. Status tokens,
as described in Section [[II-B3] (such as D, Vv, V?, efc.), are
provided along with claim status evidence like so:

Type S Col
INDEX_LOWER @68

Explication
T Paths (0,1,2)

v
INDEX_UPPER@68 | V | T | Paths (0,1,2)
POST check@68 R FT Failing Path (0@68), Paths (1,2)
Overall Status: R

The above is a condensed report excerpt for the swap pro-
cedure of Figure [[(h)} the report summary style follows that
of SPARK’s POGS. The report shows the verification status
of swap’s postcondition (the Overall Status is R indicating that
the claim is refuted), including its supporting primitive claims
(e.g., INDEX_LOWER, INDEX_UPPER, which are array range
checks) and its defining primitive claim (i.e., POST). For each
primitive claim, the S column gives the verification status of
the primitive claim given by INTERPPRIM® | the Col column
gives the result of COLLECTPRIM®, and the Explication column
gives links to the evidence that justifies the status.

As can be observed from the report, there are three distinct
paths that soundly abstract all the concrete executions of
swap’s code/contract. The supporting claims are verified for
all executions, but the defining claim is refuted by Failing Path
0, while the other two interestingly (perhaps unexpectedly)
satisfy the post-condition.

To complement this high-level summary, Bakar Kiasan also
generates detailed HTML reports that include source code
highlighting (e.g., syntax highlighting, highlighting of prob-
lematic areas as described in Section [V)), and code coverage.
The HTML report illustrates each path as a test case with
visualization of its pre/post-states. Space constraints prevent
us from illustrating the HTML reports in sufficient detail;
interested readers can find complete evaluation reports for all
our examples online [18].

Figure [3] presents the collective summary (%) of the claim
statuses for all examples mentioned at the start of this section.
This represents data for 31 explicit claims (recall that a



[ % | D]V [ RF[R[FP[U]V]I]
Explicit | 32 | 58.1 | 129 | 32 | 3.2 | 0.0 | 32 | 129 | 32
Implicit | 0.4 | 89.0 | 03 [ 00 | 0.0 | 0.0 | 02 | 99 | 02
Total | 05 | 880 | 0.7 | 0.1 | 0.1 | 0.0 | 03 | 100 | 03

Fig. 3. Claim Status Distribution

claim, such as a post-condition of Figure can consist
of a complex expression spanning several source lines and
calls to helper functions), and 972 implicit claims. For each
claim status, the table gives the percentage of claims that
have that status. Our goal here is not to suggest that the
given distribution is in any way representative of what might
be obtained if a different and larger sample of code was
analyzed. Rather, we believe that our main achievement is
that XSYMEXE is able to generate such results. As stated in
the introduction, our aim in the creation of XSYMEXE is not
to suggest a replacement for, say, VCGen-based verification
technology, but to offer a fully-automated complementary
alternative that we have found most useful during the early
stages of contract and code development in critical systems.

As for the results themselves, to our surprise, the tool
pointed out some dead claims in our SPARK suite despite it
being used and analyzed in previous studies. The number of
VERIFIED claims is high, and the percentage for the other
statuses are low. This is what we would expect because our
SPARK code suite is fairly mature—the contracts have been
repeatedly analyzed and (re-)worked. We anticipate that in
practice, developers will more frequently encounter faulty
and refuted claims as they write code/contracts, and they
will want to eliminate those as early as possible during
development (e.g., analogous to experiences when coding in
a statically-typed language). Once those are addressed, their
verification effort can then focus on the inconclusive statuses
(i.e., UNCOVERED, INDETERMINATE and those qualified with
“?”), which may require the use of higher-reward, higher-effort
techniques (e.g., VCGen tools or using proof assistants).

The proportion of claim statuses that are conclusive vs.
those that are not is 4 for explicit claims and 8.5 overall. That
is, on average, our tool is able to report 8.5 conclusive claim
results for every 1 inconclusive one in our sample. While this
is a good ratio for XSYMEXE, more studies are needed to
better appreciate what the proportion may be on a larger and
perhaps evolving code in production.

VII. RELATED WORK

Early work on the application of SYMEXE to the verification
of safety-critical software is described by Coen-Porisini et
al. [19]. They used SYMEXE to verify properties, expressed in
a specialized Path Description Language (PDL), of functions
written in Safe-C, a very restricted dialect of C. In their
approach, a user must first use tooling to semi-automatically
create a finite program Execution Model (EM) which is then
used as input to the PDL Property Checker which in turn
reports the list of EM paths for which given properties hold.
Our work differs firstly in that Kiasan directly processes
SPARK specifications expressed as contracts as opposed to

separate properties written in a specialized language. SPARK
contracts are formed from predicates built from standard Ada
expressions. More importantly, Kiasan is fully automatic, and
does not require, e.g., user intervention in the creation of a
finite model in the presence of while loops as is the case for
the EM generator. Forcing users to create finite EMs side steps
many of the problems we address in XSYMEXE.

Our work was partly inspired by the SPARK [9] Proof
ObliGation Summariser (POGS) that: (a) summarizes the ver-
ification status of verification conditions as they are processed
by different stages in the SPARK tool chain, and (b) uses
SPARK’s ZombieScope tool to indicate code regions that are
semantically dead. Our aim was to see how this concept could
be adapted from: (1) the logical interpretation of contracts in
the current version of SPARK to the executable interpretation to
be used in the upcoming version, and (2) VCGEN to SYMEXE
so that developers could profit from the benefits of SYM-
EXE. Specifically, in contrast to SPARK’s VCGEN approach,
SYMEXE naturally generates counter-examples and test cases
as evidence, enables a number of helpful visualizations, and
does not require loop invariants to obtain an initial degree of
contract checking. In addition, SPARK’s VCGEN tends to yield
an all-or-nothing approach when verifying contracts. Paths
through a procedure are broken into segments and a VC is
generated for each segment. Unless VCs for all segments are
discharged (or one is observed to be false), nothing meaningful
can be said about the verification status of the contract.

With SYMEXE, a developer’s knowledge about the verifi-
cation status of a contract is much more continuous: imme-
diate feedback with a degree on inconclusiveness is provided
with low bounds and conclusiveness is increased as bounds
increase. POGS is less discerning. It only characterizes a VC
as discharged or undischarged; it does not distinguish between
an obligation that can be refuted from one whose status is
yet to be determined. Finally, our approach detects both dead
code and dead claims. This is beneficial for identifying, e.g.,
portions of contracts that are not useful. ZombieScope can
detect dead code (and thus, detecting dead claims that are
inside the dead code regions); however, it does not detect dead
claims outside of code such as pre- and post-conditions as it
uses the logical contract interpretation.

Our discussion above applies, to some extent, to other
VCGEN techniques such as ESC/Java tool family [20], [21],
Boogie [22], and Why [23]]. Similar to SPARK tools, ESC/-
Java2 has dead code detection; however, it does not detect
dead claims. ESC/Java2, Boogie, Open]JML ESC, and Why
do not generate concrete counter-examples to illustrate claim
refutations. Some of these tools do provide counter-examples,
but not in a form that is familiar to developers, i.e., logical
formulae instead of test cases (e.g., [21]); thus, it does not
scale well (in terms of clarity) to counter-examples involving
complex constraints. Similar to the SPARK Examiner, ESC
tools and Why do not distinguish provable claim refutations
from failed verification attempts.

Some VCGEN-based tools such as Boogie can resort to a
form of eager bounded analysis by loop unrolling (hence, loop



invariants are not required), but, in such cases, it diminishes the
technique to merely bug-finding. In contrast, XSYMEXE uses
dynamic lazy bounding, thus, XSYMEXE can achieve verifica-
tion when it determines all behaviors are within the bounds.
Moreover, we are not aware of their reporting capabilities (e.g.,
evidence generation and result categorization), especially to
the extent of the work presented here. We believe our work
can be adapted to a bounded VCGEN-based approach as well.

Verifast [7] and jStar [8] are verification tools based on
separation logic for checking claims about heap data. They
use an algorithmic approach to SYMEXE that differs from that
are used in SPF, Klee, Bakar Kiasan, etc.. Instead of relying
on bounded checking, these tools require loop invariants and
inductive predicates over data structures to create symbolic
summaries of heap shapes. While these tools are beneficial,
they target a different space, i.e., focusing on full verification
of heap properties and require significantly more annotations
to be added by developers. For counter-example information,
jStar can only generate program locations of interest when it
cannot verify claims. In addition, it does not discern undis-
charged claims (similar to the SPARK Examiner and VCGEN
tools above), and it does not address contract undefinedness.

We believe bug finding tools such as SPF [[10], Klee [6],
and PeX [4] are useful, especially when applied to code as it
is being developed. However, because of many engineering
compromises such as selective search (e.g., heuristic-based
symbolic state-space exploration), context bounding (e.g., test
harness), efc., they do not provide guarantees when there is
no bug detected. Hence, such approaches are not be able to
verify claims or to precisely determine dead claims (or code).

Regardless, we believe our approach can be applied in
such under-/over-approximating settings. For example, in the
context of selective search, which causes some states to not
be explored, the states can be treated as cutoff points. Context
bounding is essentially an ad hoc form of assumption which
may produce under-/over-approximation; it is typically done
for testing certain code behaviors. As the code is geared for
verification, it should be codified as a contract.

VIII. CONCLUSIONS AND FUTURE WORK

We have argued that bounded SYMEXE, as commonly
implemented in the software engineering community, cannot
be applied effectively for verification. Despite the fact that
it: (a) offers various usability advantages, and (b) typically
employs the same underlying decision procedure packages
as verification condition generation (VCGen), the ad hoc
approaches taken in SYMEXE for introducing optimizations
and over/under-approximations have prevented tools from re-
porting the precise verification status of contract claims—
causing SYMEXE to take a back seat to other deduction based
techniques like VCGen in the context of verification.

In this work, we have presented a collection of principles
that allow SYMEXE to be used confidently in development
contexts that require verification as opposed to just bug-
finding. Furthermore, we have presented an approach by which
information accumulated during SYMEXE can organized into

explications that provide evidence-based justifications for the
resulting verification status of claims. Although we have
demonstrated our approach in the context of the SPARK
framework, the principles that we have introduced can be
applied by other bounded SYMEXE tools as well.

The foundation presented here enables a number of in-
teresting future directions. For example, making verification
status of claims explicit enables a synergistic combination with
other verification tools (e.g., VCGen-based tools): programs
are first submitted to highly-automated XSYMEXE based tech-
niques, and then only undischarged claims (i.e., any status but
VERIFIED, REFUTED, DEAD) are handed off to downstream
verification tools that require more manual effort.
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