
e2
 ESQuaReD

Software Product Line Testing
Part IV : A Framework for

Variability Coverage
Myra Cohen Matthew Dwyer

Laboratory for Empirically-based Software Quality Research

Department of Computer Science

University of Nebraska - Lincoln

Work supported by NSF CCF through awards 0429149 and 0444167, by
the U.S. Army Research Office through award DAAD190110564 and
by an NSF EPSCoR FIRST award.

2

Outline
Software Product Lines : What and Why?

Modeling Variability in Software Product Lines

Validating Product Lines

A Framework for Variability Coverage

Toward Product Line Driven Test Processes

3

Outline

A Framework for Variability Coverage

1. Adapting Covering Arrays to Real Systems
2. Building Covering Arrays

1. Overview
2. One-row-at-a-time Greedy Algorithms
3. Meta-heuristic Search

4

CA(9;2,4,3)
(also an OA(2,4,3))

LocalISDNOS XMozilla9

ScreenLANLinuxMozilla8

NetworkedPPPWindowsMozilla7

LocalPPPLinuxIE6

NetworkedLANOS XIE5

ScreenISDNWindows XPIE4

ScreenPPPOS XNetscape3

NetworkedISDNLinuxNetscape2

LocalLANWindows XPNetscape1

PrinterConnectionOSBrowserConfig

A set of product line instances that covers
all pair-wise interactions.

5

Interaction Strength

• We can quantify the “coverage” for a particular
interaction strength.

• Example:
– 4 factors
– Each has 3 values
– Quantify 2-way coverage
Any single test case can cover at most or 6 possible pairs.

The system has or 54 pair-wise interactions.

The addition of one new test can contribute at most 6/54 or 11.1% pair
wise coverage.

2

4

23
2

4

6

Adaptations for Real Systems

• So far we have seen a covering array with v
symbols. This means each factor has the
same number of values.

BUT:
• This is usually not the case in a real system.

•Model : Civic, Accord
•Package : Sedan, Coupe, Hybrid, GX, Si
•Transmission : manual, auto, cvt
•Power : gas, hybrid, natural gas
•Doors : 2, 4
•Cylinders : 4, 6
•Nav system : Y/N

7

Mixed Level Covering Arrays
MCAλ(N;t,k,(v1,v2,…,vk))
Is an N x k array on v symbols where:

 v =

And:
– For each column i where (i ≤ i ≤ k)
– The rows of each N x t sub-array cover all t-tuples or values

from the t columns at least λ times.

∑ =

k

i iv1

Shorthand Notation:
 MCAλ(N;t,(w1

k1w2
k2 …ws

ks))
 Example: MCA(12;2,4,(4, 3,3,2)) ≡ MCA(12;2,(41 3221))

8

MCA(12;2,413221)

NetworkedPPPLinuxIE

LocalLANOS XSafari

LocalPPPWindows XPMozilla

LocalISDNLinuxNetscape

NetworkedISDNWindows XPSafari

NetworkedLANOS xIE

NetworkedISDNWindows XPIE

LocalPPPOS XNetscape

LocalLANLinuxMozilla

NetworkedPPPLinuxSafari

NetworkedISDNOS XMozilla

LocalLANWindows XPNetscape

9

MCA(12;2,413221)

NetworkedPPPLinuxIE

LocalLANOS XSafari

LocalPPPWindows XPMozilla

LocalISDNLinuxNetscape

NetworkedISDNWindows XPSafari

NetworkedLANOS xIE

NetworkedISDNWindows XPIE

LocalPPPOS XNetscape

LocalLANLinuxMozilla

NetworkedPPPLinuxSafari

NetworkedISDNOS XMozilla

LocalLANWindows XPNetscape

10

Limitation

• Mixed level covering arrays are closer to
real systems; they can be used for an
arbitrary software system.

• But they view a system flatly. They force
a (perhaps arbitrary) restriction on the
importance of various parts of the
system.

11

Scenarios
1. When testing a software system certain

components may be closely interrelated.
This may be determined by static analysis.

2. Operational profiles give us information that
certain areas of the system are used more
often than others.

3. In modifying a system only certain regions
are changed therefore we want to test more
strongly in this area.

4. Failures in certain parts of a system are
more costlier than in others.

12

Possible Models

t=2
t=3

t=4

13

Some Possible Models

t=2
t=3

t=2
t=3

t=4

t=3

t=4

14

An Initial Model

strength 2 array

A (Browser)

Netscape
IE
Mozilla

C(Connection)
LAN
PPP

B (OS)

Windows XP
OS X
Linux

D (Printer)
Local
Networked

Strength 3 array

15

Variable Strength Covering
Arrays

MCA(9;2,3222)

B

D

A

C

0,1,2

3,4,5

6,7 8,9

DCBA

9630
8751
9752
9742
8641
9650
8632
9731
8740

t=2
t=3

A 3-way array would have 18 rows

16

Variable Strength Covering
Arrays

MCA(9;2,3222)

Additional rows to
guarantee subset of 3-
way coverage

B

D

A

C

0,1,2

3,4,5

6,7 8,9

DCBA

8651*

9642*

8730*

9630

8751

9752

9742

8641

9650

8632

9731

8740

t=2
t=3

17

Variable Strength Covering
Array

• A VCA(N;t,k,(v1,v2,…vk), C) is a t-way
mixed level covering array on v symbols
with a vector, C, of covering arrays each
with strength > t and defined on a subset
of the k columns of the VCA.

18

V

 VP

Intrusion
Detection

 VP

Door
Locks

Camera
Surveillance

Motion
Sensors

Cullet
Detection Basic Advanced Keypad

Fingerprint
Scanner

Security
Package

 VP

V V V V V V

requires_v_v

requires_v_v

Adding Constraints

19

Fingerprint ScannerAdvancedCullet DetectionMotion Sensors

KeypadAdvancedCullet DetectionCamera Surveillance

Fingerprint ScannerAdvancedNoneCamera Surveillance

Camera Surveillance

Motion Sensors

Intrusion Detection A

Fingerprint ScannerBasicCullet Detection

KeypadBasicNone

Door LocksSecurity
Package

Intrusion Detection
B

Constrained Set of Product Instances
“Basic requires Motion Sensors and Keypad”

“Basic excludes Cullet Detection”

Adding Constraints

20

Fingerprint ScannerAdvancedCullet DetectionMotion Sensors

KeypadAdvancedCullet DetectionCamera Surveillance

Fingerprint ScannerAdvancedNoneCamera Surveillance

Camera Surveillance

Motion Sensors

Intrusion Detection A

Fingerprint ScannerBasicCullet Detection

KeypadBasicNone

Door LocksSecurity
Package

Intrusion Detection
B

Constrained Set of Product Instances
“Basic requires Motion Sensors and Keypad”

“Basic excludes Cullet Detection”

Adding Constraints

21

Fingerprint ScannerBasicCullet DetectionCamera Surveillance

Fingerprint ScannerAdvancedCullet DetectionMotion Sensors

KeypadAdvancedCullet DetectionCamera Surveillance

Fingerprint ScannerAdvancedNoneCamera Surveillance

Motion Sensors

Intrusion Detection A

KeypadBasicNone

Door LocksSecurity
Package

Intrusion Detection
B

Constrained Set of Product Instances
“Camera Surveillance requires Fingerprint Scanner”

Another set of Constraints

22

Fingerprint ScannerBasicCullet DetectionCamera Surveillance

KeypadAdvancedCullet DetectionMotion Sensors

Fingerprint ScannerAdvancedCullet DetectionMotion Sensors

KeypadAdvancedCullet DetectionCamera Surveillance

Fingerprint ScannerAdvancedNoneCamera Surveillance

Motion Sensors

Intrusion Detection A

KeypadBasicNone

Door LocksSecurity
Package

Intrusion Detection
B

Constrained Set of Product Instances
“Camera Surveillance requires Fingerprint Scanner”

Another set of Constraints

23

Constraints in our Original
Example

“Mozilla does not run on Linux”
“Linux does not support print to the screen”

LocalISDNOS XMozilla9

ScreenLANLinuxMozilla8

NetworkedPPPWindows XPMozilla7

LocalPPPLinuxIE6

NetworkedLANOS XIE5

ScreenISDNWindows XPIE4

ScreenPPPOS XNetscape3

NetworkedISDNLinuxNetscape2

LocalLANWindows XPNetscape1

PrinterConnectionOSBrowserTest Case

24

Constraints in our Original
Example

“Mozilla does not run on Linux”
“Linux does not support print to the screen”

LocalISDNOS XMozilla8

LocalLANLinuxIE9

ScreenLANWindows XPNetscape10

ScreenLANLinuxMozilla8

NetworkedPPPWindows XPMozilla7

LocalPPPLinuxIE6

NetworkedLANOS XIE5

ScreenISDNWindows XPIE4

ScreenPPPOS XNetscape3

NetworkedISDNLinuxNetscape2

LocalLANWindows XPNetscape1

PrinterConnectionOSBrowserTest Case

25

Other Practical Issues

• Seeded or default instances.

• Aggregate factors.

• Cost of testing specific instances.
– May consider order of validating instances and set-

up costs.

26

Outline : Interaction Testing in
Practice

A Framework for Variability Coverage

1. Adapting Covering Arrays to Real Systems
2. Building Covering Arrays

1. Overview
2. One-row-at-a-time Greedy Algorithms
3. Meta-heuristic Search

27

Combinatorial Results

• How do we know the covering array
number (CAN)?

• How can we find the a subset of product
instances that satisfies the properties of
a covering array?

28

Results on Covering Arrays

There are two types of results:
1. Probabilistic:

• We can prove a bound exists but
can’t necessarily create the subset.
Only useful for finding the CAN.

29

Results on Covering Arrays

There are two types of results:
2. Constructive:

• prove a new bound by giving a direct or
algebraic construction.

–Often recursive in nature.
–Requires extensive mathematical

knowledge.
–Only works for certain values of t, k, v.

30

Constructive Results

• Although direct or algebraic constructions
often give us the smallest subset for a
covering array, they are not general.

• There are less constructions for mixed level
covering arrays and none yet for variable
strength arrays.

31

Computational Search

• These are constructive techniques.
Pros:
– They are general.
– They extend easily to mixed level and can

be adapted for variable strength, and seeds.
Cons:
– May not always give us the optimal CAN

size.
– May take a long computational time to find a

CA.

32

Computational Search

• The problem of finding whether a minimal
covering array exists for a given size is a
difficult problem.

• Variants of this problem have been
formulated and shown to be NP Hard
problems.

• We cannot exhaustively search for a
solution!

33

Algorithmic Techniques

Greedy algorithms:
• AETG - Automatic Efficient Test Case Generator
• TCG - Test Case Generator
• DDA -Deterministic Density Algorithm
• IPO - In Parameter Order
Heuristic/Meta-heuristic Search:
• Hill Climbing
• Simulated Annealing
• Genetic Algorithms
• Tabu Search

34

Some Available Tools
• AETG - Telcordia, Inc.: Commercial product

http://aetgweb.argreenhouse.com/

• WHITCH - Alan Hartman: Eclipse plugin. It includes a tool called
CTS (uses algebraic constructions) and a tool called tofu. You can
plug in your own algorithms as well.

http://alphaworks.ibm.com/tech/whitch

• TestCover - George Sherwood: Commercial tool: uses algebraic
constructions. Has a student use license available.

http://www.testcover.com/

• TConfig - Alan Williams: Uses algebraic constructions. Also
includes an implementation of IPO.

http://www.site.uottawa.ca/~awilliam/

35

Outline : Interaction Testing in
Practice

A Framework for Variability Coverage

1. Adapting Covering Arrays to Real Systems
2. Building Covering Arrays

1. Overview
2. One-row-at-a-time Greedy Algorithms
3. Meta-heuristic Search

36

Greedy Algorithms

• One class of greedy algorithms add one-
row at a time until the covering array is
complete.

• The algorithms included in this brief
overview include: AETG, TCG, DDA

37

One Row at a Time Greedy
Algorithms

 . . .

 . . .

 . . .

M Candidates

y z . . . x
1…………………………….k

use factor ordering
to select values

…
…

N

1
.
.
. add rows until all

 t-sets covered
select best instance to add

38

AETG

• The commercial AETG tool is patented.
• It uses some algebraic constructions,

handles constraints and includes some
post-processing steps.

• The original algorithm is presented next,
but it does not include these
improvements.

39

AETG Summary

• For each test case create M (50) new test cases.

• For each of the M test cases
– Permute the order of the factors so that the first column has a

symbol with the largest number of uncovered pairs. We fix this
symbol and column. Randomly permute the rest.

– Fill in the values for factors in the permutation order
• For each factor choose the symbol that creates the most new

pairs with the other columns already filled.

• Select the product instance (from M) which covers the
most new pairs.

40

AETG

Pairs Covered:
3,6 0,5
3,7 0,8
3,10 0,11
6,7 5,8
6,10 5,11
7,10 8,11

Factor Ordering: 3,2,4,1

41

AETG

Pairs Covered:
3,6 0,5
3,7 0,8
3,10 0,11
6,7 5,8
6,10 5,11
7,10 8,11

Factor Ordering: 3,2,4,1

SELECT Value 10

42

Other Members of the
Framework

• TCG - Test Case Generator

(Tung and Aldiwan)

• DDA - Deterministic Density Algorithm
 (Colbourn, Cohen, Bryce)

43

TCG

• Sorts factors in decreasing order of
number of values.

• Always fills in the values in this order.

• When there is a tie between two values
the one that has been used least often is
selected.

44

TCG

45

TCG

SELECT value 5

46

Outline : Interaction Testing in
Practice

A Framework for Variability Coverage

1. Adapting Covering Arrays to Real Systems
2. Building Covering Arrays

1. Overview
2. One-row-at-a-time Greedy Algorithms
3. Meta-heuristic Search

47

Heuristic Search

• Heuristic techniques: methods that seek
a good (close to optimal) solution using a
reasonable amount of computational cost.
These techniques cannot guarantee
optimality and may not guarantee
feasibility.

48

Heuristic Search

Combinatorial Optimization algorithms
1) Define a Set of Feasible solution
2) Each solution assigned a cost
3) Perform a series of transitions to new

solutions chosen at random
4) If the new solution has the same or better cost

– commit the change.
5) Otherwise don’t commit.
6) We continue until we have an optimal cost or

we are frozen

49

Hill Climbing

∑ -Set of feasible solutions

cost(S) : number of uncovered
t-sets in S

When cost=0 we have a
covering array

S1 S2

S3 ….. Si

•Start with a random feasible solution

•Randomly choose/change one symbol to form a new
feasible solution

50

Random
instance

Random
 factor

Cost

 # uncovered t-sets Change value

Example

1…………………………..k

1

.

.

.

.

N

51

Example of Hill Climb
Rows

8

7

6

5

4

3

2

1

110

011

000

0

0

1

0

1

00

01

00

11

10
CA(N;3,3,2)

t-sets
000 - 2
001 - 0
010 - 1
011 - 2
100 - 1
101 - 1
110 - 1
111 - 0

Cost = 2
 Change?

52

Example of Hill Climb
Rows

8

7

6

5

4

3

2

1

111

011

000

0

0

1

0

1

00

01

00

11

10
CA(N;3,3,2)

t-sets
000 - 2
001 - 0
010 - 1
011 - 2 1
100 - 1
101 - 1
110 - 1
111 - 0 1

Cost = 1
 Improves the Cost - keep this change

53

Example of Hill Climb
Rows

8

7

6

5

4

3

2

1

110

011

000

0

0

1

0

1

00

01

00

11

10
CA(N;3,3,2)

t-sets
000 - 2
001 - 0
010 - 1
011 - 2
100 - 1
101 - 1
110 - 1
111 - 0

Cost = 2
Change?

54

Example of Hill Climb
Rows

8

7

6

5

4

3

2

1

110

011

000

0

1

1

0

1

00

01

00

11

10
CA(N;3,3,2)

t-sets
000 - 2
001 - 0
010 - 1
011 - 2
100 - 1 0
101 - 1
110 - 1 2
111 - 0

Cost = 3
Makes the solution worse! Do not keep

55

Lower bound L

Binary search for “best” solution

Upper bound U

(L+U)/2

Finding “N”

56

Problems with Hill Climbing

• May get stuck in local optimums.

57

Meta-heuristic Algorithms

• Provide mechanisms to escape local
optimums. Sometimes we make accept a
worse choice in the hope we will find a
better route to a good solution.

• We want to control the probability of
making a bad choice.

58

Some Examples

• Genetic Algorithms

• Simulated Annealing

• Tabu Search

• Ant Colony Algorithm

59

Simulated Annealing

• Based on the physical annealing process
that is used to cool metal.

• Idea is to start at a high temperature. At
each temperature the molecules stabilize
and then the metal is cooled to the next
temperature.

60

S

t(S)
N(S)

Select t(S) such that

cost(t(S)) ≤ cost(S) or

cost(t(S)) > cost(S) subject to controlled probability

Search space Σ

Simulated Annealing

61

Metropolis condition:

Accept bad move with probability e-Δ/T

Design decisions (cooling schedule):

(1) Value of T0

(2) Generating Tk from Tk-1

(3) Length of Markov chain Lk

(4) Stopping condition

Simulated Annealing

62

Other Meta-heuristic Search

• Genetic algorithms: population based
search.
(J. Stardom 2000)

• Tabu Search: steepest descent. Maintain
a tabu list to prevent getting stuck in a
cycle.
(K. Nurmela 2004)

63

References

D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, The AETG system: an
approach to testing based on combinatorial design, IEEE Transactions on
Software Engineering, vol. 23, no.7, pp. 437--444, 1997.

M. B. Cohen, C.J. Colbourn, J.Collofello, P.B. Gibbons, and W. B. Mugridge,Variable
strength interaction testing of components in 'Proc. of 27th Intl. Computer
Software and Applications Conference (COMPSAC), November 2003, pp. 413--
418.

M.B. Cohen, C.J. Colbourn, P.B. Gibbons, and W.B. Mugridge, Constructing test suites
for interaction testing, in Proc. of the Intl. Conf. On Software Engineering (ICSE),
May 2003, pp. 38--48.

M. B. Cohen, C. J. Colbourn, and A. C. H. Ling, Constructing strength three covering
arrays with augmented annealing, Discrete Mathematics, to appear.

M..B. Cohen, Designing test suites for software interaction testing, PhD Dissertation,
University of Auckland, Department of Computer Science, 2004.

64

References

C.J. Colbourn, M. B. Cohen, and R..C. Turban, A deterministic density algorithm for
pairwise interaction coverage, in IASTED Proc. of the Intl. Conference on
Software Engineering, February 2004, pp. 345--352.

A.Hartman and L.Raskin, Problems and algorithms for covering arrays, Discrete Math,
vol. 284, pp. 149 -- 156, 2004.

K.J. Nurmela, Upper bounds for covering arrays by tabu search, Discrete Applied
Mathematics, vol. 138, no. 1-2, pp. 143--152, 2004.

J. Stardom, Metaheuristics and the search for covering and packing arrays, Master's
thesis, Simon Fraser University, 2001

K..C. Tai and Y. Lei, A test generation strategy for pairwise testing, IEEE Transactions
on Software Engineering, vol.28, no.1, pp. 109--111, 2002.

65

References

Y.-W. Tung and W. S. Aldiwan, Automating test case generation for the new
generation mission software system,'' in Proc. IEEE Aerospace Conf.,
2000, pp. 431--437.

A. W. Williams, Determination of test configurations for pair-wise interaction
coverage, in Thirteenth Intl. Conf. Testing Communication Systems,
2000, pp. 57--74.

