
e2
 ESQuaReD

Software Product Line Testing
Part III : Interactions

Myra Cohen Matthew Dwyer

Laboratory for Empirically-based Software Quality Research

Department of Computer Science

University of Nebraska - Lincoln

Work supported by NSF CCF through awards 0429149 and 0444167, by
the U.S. Army Research Office through award DAAD190110564 and
by an NSF EPSCoR FIRST award.

2

Outline
Software Product Lines : What and Why?

Modeling Variability in Software Product Lines

Validating Product Lines

A Framework for Variability Coverage

Toward Product Line Driven Test Processes

3

Outline

Validating Product Lines

1. Introduction
2. A Motivating Example
3. Combinatorial Interaction Testing

4

The Meaning of Validation

A program is validated if we have
confidence that it will operate correctly.

A software product line is validated if we
have confidence that any instance of that
produce line will operate correctly.

5

Validating the Instance

V

 VP

Intrusion
Detection

 VP

Door
Locks

Camera
Surveillance

Motion
Sensors

Cullet
Detection Basic Advanced Keypad Fingerprint

Scanner

Security
Package

 VP

V V V V V V

6

 VP

Intrusion
Detection

 VP

Door
Locks

Security
Package

 VP

Validating the Instance

7

 VP

Intrusion
Detection

 VP

Door
Locks

V

Camera
Surveillance

Security
Package

 VP

Validating the Instance

8

 VP

Intrusion
Detection

 VP

Door
Locks

V

Camera
Surveillance

V

Cullet
Detection

Security
Package

 VP

Validating the Instance

9

 VP

Intrusion
Detection

 VP

Door
Locks

V

Camera
Surveillance

V

Cullet
Detection

V

Basic

Security
Package

 VP

Validating the Instance

10

• Can we re-use tests across different
instances?

 VP

Intrusion
Detection

 VP

Door
Locks

V

Camera
Surveillance

V

Cullet
Detection

V

Basic

Security
Package

 VP

V

Keypad

Validating the Instance

11

Validating the Product Line

• Focus is on testing the product line as a
whole.

V

 VP

Intrusion
Detection

 VP

Door
Locks

Camera
Surveillance

Motion
Sensors

Cullet
Detection Basic Advanced Keypad Fingerprint

Scanner

Security
Package

 VP

V V V V V V

12

Testing An SPL

• Much of the current research on testing SPLs
focuses on testing individual instances and
reuse of specific test cases.

• Our assumption is that this problem has been
solved and good test cases have been
developed.

• We add a second layer of complexity and focus
on the entire product line.

13

Outline : Interactions

Validating Product Lines

1. Introduction
2. A Motivating Example
3. Combinatorial Interaction Testing

14

An Example Variability Model

ScreenISDNLinuxMozilla

NetworkedPPPOS XIE

LocalLANWindows XPNetscapeValue

Printer TypeConnection TypeOperating SystemWeb Browser

Factors

15

Testing This Model

ScreenISDNLinuxMozilla

NetworkedPPPOS XIE

LocalLANWindows XPNetscapeValue

Printer TypeConnection TypeOperating SystemWeb Browser

Factors

In this example we have
• 4 factors
• 3 values each

16

Testing This Model

ScreenISDNLinuxMozilla

NetworkedPPPOS XIE

LocalLANWindows XPNetscapeValue

Printer TypeConnection TypeOperating SystemWeb Browser

Factors

In this example we have
• 4 factors
• 3 values each

There are 34 or 81 possible instances of this variability model

.

17

Testing This Model

ScreenISDNLinuxMozilla

NetworkedPPPOS XIE

LocalLANWindows XPNetscapeValue

Printer TypeConnection TypeOperating SystemWeb Browser

Factors

In this example we have
• 4 factors
• 3 values each

There are 34 or 81 possible instances of this variability model

Suppose we have 15 factors with 5 values each:
5 15 = 30,517,578,125 possible instances!

We cannot realistically test all of these.

18

Some Real Software Systems

• SQL Server 7.0:
– 47 configuration options

• 10 are binary, the rest have a range of values

• Oracle 9:
– 211 initialization parameters

• ? Options/per parameter

• Apache HTTP Server Version 1.3
– 85 core configuration options

• 15 binary

• GCC-3.3.1 compiler
– over 1000 command line flags

• These control 14 options.
• More than 50 flags are used to control optimization alone

• Czarnecki:
• E-commerce software product line with 350 variation points

19

Another Example: ACE+TAO
(Memon et al., ICSE 2004)

Middleware for distributed software applications
Over 1 million lines of code, runs on multiple operating systems

and multiple compilers.

• Static configurations:
– The static configuration space has over 82,000 potential

configurations.
– Compiling the full system requires 4 hours.
– A simplified model was used that examined less than 100

static configurations. Of these only 29 compiled successfully.

• Dynamic configurations:
– This includes 6 runtime options ranging from 2-4 values each.
– 648 possible combinations of CORBA runtime policies, each of

which has to be tested with all valid static configurations (29).

20

ACE/TAO (Cont.)

• Tests Provided
– A set of 96 tests has to compiled and run for each system

configuration
– Compilation of these test cases requires an additional 3.5

hours
– running this set of tests requires 30 minutes.

• Total time to compile/run tests for each configurations
8 hours

• Testing the partial variation space includes compiling
and testing 18,792 configurations which requires 9,400
hours (1 year) of computer time!

21

Mappings

TAO_HAS_AMI
TAO_HAS_AMI_CALLBACK
TAO_HAS_AMI_POLLER
TAO_HAS_CORBA_MESSAGING
TAO_HAS_DIOP
TAO_HAS_INTERCEPTORS
TAO_HAS_MINIMUM_CORBA
TAO_HAS_MINIMUM_POA
TAO_HAS_MINIMUM_POA_MAPS
TAO_HAS_NAMED_RT_MUTEXES

Static Configs
1- ORBCollocation
 global
 per-orb
 NO
2- ORBConnectionPurgingStrategy
 lru
 lfu
 fifo
 null

Some Runtime

1101100001 per-orb lfu reactive thread-per-connection MT LF
1001110001 per-orb fifo reactive reactive RW LF

Instances

22

Sampling the Variability Space

• One solution used for functional software
testing is to sample a systematic subset of
input combinations.

• Want to guarantee certain properties are met.

• A balanced property is to select a sample that
includes all pairs or three way combinations of
factors.

23

Pair Wise Coverage of the SPL

ScreenISDNLinuxMozilla

NetworkedPPPOS XIE

LocalLANWindows XPNetscapeValue

PrinterTypeConnection TypeOperating SystemWeb Browser

Factors

24

Pair Wise Coverage of the SPL

ScreenISDNLinuxMozilla

NetworkedPPPOS XIE

LocalLANWindows XPNetscapeValue

PrinterTypeConnection TypeOperating SystemWeb Browser

Factors

LocalISDNOS XMozilla9

ScreenLANLinuxMozilla8

NetworkedPPPWindows XPMozilla7

LocalPPPLinuxIE6

NetworkedLANOS XIE5

ScreenISDNWindows XPIE4

ScreenPPPOS XNetscape3

NetworkedISDNLinuxNetscape2

LocalLANWindows XPNetscape1

PrinterConnectionOSBrowserTest Case

25

Outline : Interactions

Validating Product Lines

1. Introduction
2. A Motivating Example
3. Combinatorial Interaction Testing

26

Combinatorial Interaction
Testing
• Based on statistical design of experiments (DOE)

– Manufacturing
– Drug test interactions
– Chemical interactions

• For software testing
– Mandl – compiler testing
– Brownlie, Prowse, Phadke – OATS system
– D. Cohen, Dalal, Fredman, Patton, Parelius – AETG
– Williams, Probert – network node interfaces
– Yilmaz, Cohen, Porter- ACE/TAO

27

Combinatorial Structures Used

• Mandl (1985) uses Mutually Orthogonal Latin
Squares

• Browlie et al. (1992) uses Orthogonal Arrays

• D. Cohen, Dalal, Fredman, Patton, Parelius
(1996) uses Covering Arrays

28

Mutually Orthogonal Latin
Squares (MOLS)

023120133102

201331020231

310202312013

132013201320

•Each row and each column contains all symbols
(0…s-1) exactly once.
•Each pair of squares covers all s2 ordered pairs

{(0,0), (0,1),(0,2),…,(s-1,s-1)}
•We can use n MOLS to test a system with n+2
factors, each with s values.

29

Example

021102

102021

210210

30

Example

021102

102021

210210

(0,0)

31

Example

021102

102021

210210

(1,2)

(0,0)

32

Example

021102

102021

210210

(1,0)(0,2)(2,1)

(0,1)(2,0)(1,2)

(2,2)(1,1)(0,0)

2220

.

.

.

1110

0000

Col row square 1 square 2
Index index cell cell

33

Example

021102

102021

210210

(1,0)(0,2)(2,1)

(0,1)(2,0)(1,2)

(2,2)(1,1)(0,0)

Netscape 0, IE 1, Mozilla 2
Win XP 0, OS X 1, Linux 2
LAN 0, PPP 1, ISDN 2
Local 0, Networked 1, Screen 2

Mappings

0 2 2 2

34

Method

• We create an s2 x (n+2) array.
(Each row will be a product line instance)

• The first two columns are the row and column
indices of the squares.

• For each row we fill the next n columns with the
cell entries of the n corresponding latin
squares.

35

Orthogonal Arrays
OAλ(t,k,v)

– A vt x k array on v symbols where each N x t sub-array contains all
ordered t-sets exactly λ times.

1111

0011

0101

1001

0110

1010

1100

0000

OA(3,4,2)

36

Orthogonal Arrays
OAλ(t,k,v)

– A vt x k array on v symbols where each N x t sub-array contains all
ordered t-sets exactly λ times.

1111

0011

0101

1001

0110

1010

1100

0000

OA(3,4,2)

37

Orthogonal Arrays
OAλ(t,k,v)

– A vt x k array on v symbols where each N x t sub-array contains all ordered
t-sets exactly λ times.

1111

0011

0101

1001

0110

1010

1100

0000

OA(3,4,2)

38

Orthogonal Arrays

• Orthogonal arrays are used in statistical testing for
determining “main effects” because they are balanced.

But:
• They do not exist for all values of t,k,v.
• They have the property that all t-sets occur exactly

once.

This property (exactly once) is more restrictive than is
needed for testing software.

39

Covering Arrays

CAλ(N;t,k,v)
– An N x k on v symbols array where each N x t sub-array

contains all ordered t-sets at least λ times.

(we can drop the λ when λ=1)

 t is the strength of the array

1

0

0

1

0

1

0101

1000

1101

0000

0011

1110
CA(6;2,5,2)

40

Covering Arrays

CAλ(N;t,k,v)
– An N x k on v symbols array where each N x t sub-array

contains all ordered t-sets at least λ times.

(we can drop the λ when λ=1)

 t is the strength of the array

1

0

0

1

0

1

0101

1000

1101

0000

0011

1110
CA(6;2,5,2)

41

Covering Arrays

CAλ(N;t,k,v)
– An N x k on v symbols array where each N x t sub-array

contains all ordered t-sets at least λ times.

(we can drop the λ when λ=1)

 t is the strength of the array

1

0

0

1

0

1

0101

1000

1101

0000

0011

1110
CA(6;2,5,2)

Networked

Local

Win XP OS X

42

Covering Arrays

t strength (t-wise coverage)
k degree (number of factors)
v order (number of values)

A covering array is optimal if it contains the minimum
possible number of rows. We call this the covering
array number:

 CAN(t,k,v)
The covering array number is not known for all covering

arrays.

43

The Original Problem

ScreenISDNLinuxMozilla

NetworkedPPPOS XIE

LocalLANWindows XPNetscapeValue

Printer
Type

Connection
Type

Operating
System

Web Browser

Factor

The product line has 4 factors, each with 3
values.
For pair-wise coverage: k=4, v=3, t=2

a CA(N;2,4,3)

44

CA(9;2,4,3)
(also an OA(2,4,3))

LocalISDNOS XMozilla9

ScreenLANLinuxMozilla8

NetworkedPPPWindowsMozilla7

LocalPPPLinuxIE6

NetworkedLANOS XIE5

ScreenISDNWindows XPIE4

ScreenPPPOS XNetscape3

NetworkedISDNLinuxNetscape2

LocalLANWindows XPNetscape1

PrinterConnectionOSBrowserConfig

A set of product line instances that covers
all pair-wise interactions.

45

Another CA(N;2,4,3)
Is this Optimal?

LocalPPPWindowsMozilla9

ScreenLANLinuxMozilla8

LocalISDNOS XMozilla11

ScreenPPPLinuxMozilla10

NetworkedPPPWindowsMozilla7

LocalPPPLinuxIE6

NetworkedLANOS XIE5

ScreenISDNWindowsIE4

ScreenPPPOS XNetscape3

NetworkedISDNLinuxNetscape2

LocalLANWindowsNetscape1

PrinterConnectionOSBrowserConfig

46

References

R.Brownlie, J.Prowse, and M.S. Phadke, Robust testing of AT&T PMX/StarMAIL using
OATS,AT& T Technical Journal, vol.71 no. 3, pp. 41--47, 1992.

D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, The AETG system: an
approach to testing based on combinatorial design, IEEE Transactions on
Software Engineering, vol. 23, no.7, pp. 437--444, 1997.

D.M. Cohen, S. R. Dalal, M. L. Fredman, and G.~C. Patton, Method and system for
automatically generating efficient test cases for systems having interacting
elements,1996, United States Patent, Number 5,542,043.

A. Hedayat, N.Sloane, and J. Stufken, Orthogonal Arrays,New York: Springer-Verlag,
1999.

47

References

D.R. Kuhn, D.R. Wallace and A.M. Gallo, Software fault interactions and implications
for software testing, IEEE Trans. Software Engineering, 30(6), 2004, pp. 418--
421.

R.Mandl, Orthogonal Latin squares: an application of experiment design to compiler
testing, Communications of the ACM, vol.28, no.10, pp. 1054--1058, 1985.

A.W. Williams and R.L. Probert, A practical strategy for testing pair-wise coverage of
network interfaces, In Proc. Intl. Symp. on Software Reliability
Engineering,(ISSRE), 1996 pp.~246--54.

C. Yilmaz, M .B. Cohen and A. Porter, Covering arrays for efficient fault
characterization in complex configuration spaces, IEEE Transactions on
Software Engineering, 31(1), 2006, pp. 20-34.

