Software Product Line Testing
Part |ll : Interactions

Myra Cohen Matthew Dwyer

Laboratory for Empirically-based Software Quality Research
Department of Computer Science

University of Nebraska - Lincoln

Work supported by NSF CCF through awards 0429149 and 0444167, by

the U.S. Army Research Office through award DAAD190110564 and
by an NSF EPSCoR FIRST award.

€©° ESQuaReD Nebiadka

Lincoln

Outline
Software Product Lines : What and Why?

Modeling Variability in Software Product Lines
® V/alidating Product Lines
A Framework for Variability Coverage

Toward Product Line Driven Test Processes

2

Outline

Validating Product Lines

® 1. Introduction
2. A Motivating Example
3. Combinatorial Interaction Testing

The Meaning of Validation

A program is validated if we have
confidence that it will operate correctly.

A software product line is validated if we
have confidence that any instance of that
produce line will operate correctly.

Validating the Instance

Camera
Surveillanc

Intrusion
Detection

7 o
s N
|
|

Motion
Sensors

Cullet
Detection

Security
Package

Advanced

Fingerprint
Scanner

Validating the Instance

VP VP

Intrusion
Detection

Security
Package

Validating the Instance

Intrusion
Detection

Security
Package

v
Camera
Surveillance

Validating the Instance

Intrusion Security

Detection Package

v v
Camera Cullet
Surveillance Detection

Validating the Instance

Intrusion
Detection

Security
Package

\Y V4 vV
Camera Cullet :
Surveillance Detection Basic

Validating the Instance

VP VP
Security Door
Package Locks

VP
Intrusion
Detection

v vV v v
Camera Cullet :
Surveillance Detection Basic Keypad

« Can we re-use tests across different
instances?

10

Validating the Product Line

Intrusion
Detection

P
s N
' 1 ~
4 | ~
P A Y
e
e

P |
7 |

7 I
amera SMotlon
SAEveiIIance ‘ ensors

A
N\
N

N
N
Cullet
Detection

/
/
/
/
‘ Basic

Security
Package
N
/7 \
/ \
N
\
\
\
\

Advanced

Door
Locks

AR
/ \
N

N
/I \
/ \

/ \
‘ Keypad Flngerprint
canner

* Focus is on testing the product line as a

whole.

Testing An SPL

* Much of the current research on testing SPLs
focuses on testing individual instances and
reuse of specific test cases.

* Our assumption is that this problem has been
solved and good test cases have been
developed.

 We add a second layer of complexity and focus
on the entire product line.

12

Outline : Interactions

Validating Product Lines
1. Introduction

® 2. A Motivating Example
3. Combinatorial Interaction Testing

13

An Example Variability Model

VP
Web
Browser

) %

Fly
I
I %
1

M
£ kY

1 %
I b
i LY

| IE Mazilla \ 05 X Lirwuo
P

W indows

F LAMN FPPF’ FISDN FL{JUH F.:'.'.ﬂmrhr_m F_-l::rur:rl

Y Factors
Web Browser | Operating System Connection Type | Printer Type
Value Netscape Windows XP LAN Local
IE OS X PPP Networked
Mozilla Linux ISDN Screen

14

Testing This Model

Factors

Web Browser | Operating System Connection Type | Printer Type

Value Netscape Windows XP LAN Local
IE OS X PPP Networked
Mozilla Linux ISDN Screen

In this example we have
* 4 factors
» 3 values each

15

Testing This Model

Factors

Web Browser | Operating System Connection Type | Printer Type

Value Netscape Windows XP LAN Local
IE OS X PPP Networked
Mozilla Linux ISDN Screen

In this example we have
* 4 factors
» 3 values each

There are 34 or 81 possible instances of this variability model

16

Testing This Model

Factors

Web Browser | Operating System Connection Type | Printer Type

Value

Netscape Windows XP LAN Local
IE OS X PPP Networked
Mozilla Linux ISDN Screen

In this example we have

* 4 factors

3 values each

There are 34 or 81 possible instances of this variability model

Suppose we have 15 factors with 5 values each:
5% = 30,517,578,125 possible instances!

We cannot realistically test all of these.

17

Some Real Software Systems

SQL Server 7.0:
— 47 configuration options
« 10 are binary, the rest have a range of values
Oracle 9:

— 211 initialization parameters
« 7 Options/per parameter

Apache HTTP Server Version 1.3
— 85 core configuration options

15 binary
GCC-3.3.1 compiler

— over 1000 command line flags
 These control 14 options.
« More than 50 flags are used to control optimization alone

Czarnecki:
e E-commerce software product line with 350 variation points

18

Another Example: ACE+TAO

(Memon et al., ICSE 2004)

Middleware for distributed software applications

Over 1 million lines of code, runs on multiple operating systems
and multiple compilers.

« Static configurations:

— The static configuration space has over 82,000 potential
configurations.

— Compiling the full system requires 4 hours.

— A simplified model was used that examined less than 100
static configurations. Of these only 29 compiled successfully.

 Dynamic configurations:
— This includes 6 runtime options ranging from 2-4 values each.

— 648 possible combinations of CORBA runtime policies, each of
which has to be tested with all valid static configurations (29).

19

ACE/TAO (Cont.)

 Tests Provided

— A set of 96 tests has to compiled and run for each system
configuration

— Compilation of these test cases requires an additional 3.5
hours

— running this set of tests requires 30 minutes.

« Total time to compile/run tests for each configurations
8 hours

« Testing the partial variation space includes compiling
and testing 18,792 configurations which requires 9,400
hours (1 year) of computer time!

20

Mappings

Static Configs Some Runtime
TAO_HAS_AMI 1- ORBCollocation
TAO_HAS_AMI_CALLBACK obal
TAO_HAS_AMI_POLLER globa
TAO_HAS_CORBA_MESSAGING per-orb
TAO_HAS_DIOP NO
TAO_HAS_INTERCEPTORS 2- ORBConnectionPurgingStrategy
TAO_HAS_MINIMUM_CORBA Iru
TAO_HAS_MINIMUM_POA i
TAO_HAS_MINIMUM_POA_MAPS .
TAO_HAS_NAMED_RT_MUTEXES rf:(li

/ Instances

1101100001 per-orb Ifu reactive thread-per-connection MT LF
1001110001 per-orb fifo reactive reactive RW LF

21

Sampling the Variability Space

* One solution used for functional software
testing is to sample a systematic subset of
input combinations.

* Want to guarantee certain properties are met.

* A balanced property is to select a sample that
includes all pairs or three way combinations of
factors.

22

Pair Wise Coverage of the SPL

Factors
Web Browser | Operating System Connection Type | PrinterType
Value Netscape Windows XP LAN Local
IE OS X PPP Networked
Mozilla Linux ISDN Screen

23

Pair Wise Coverage of the SPL

Factors
Web Browser | Operating System Connection Type | PrinterType
Value Netscape Windows XP LAN Local
IE OS X PPP Networked
Mozilla Linux ISDN Screen
Test Case Browser oS Connection Printer
1 Netscape Windows XP LAN Local
2 Netscape Linux ISDN Networked
3 Netscape OS X PPP Screen
4 IE Windows XP ISDN Screen
) IE OS X LAN Networked
6 IE Linux PPP Local
7 Mozilla Windows XP PPP Networked
8 Mozilla Linux LAN Screen
9 Mozilla OS X ISDN Local

24

Outline : Interactions

Validating Product Lines
1. Introduction

2. A Motivating Example
® 3. Combinatorial Interaction Testing

25

Combinatorial Interaction
Testing

« Based on statistical design of experiments (DOE)
— Manufacturing
— Drug test interactions
— Chemical interactions

* For software testing
— Mand| — compiler testing
— Brownlie, Prowse, Phadke — OATS system
— D. Cohen, Dalal, Fredman, Patton, Parelius — AETG
— Williams, Probert — network node interfaces
— Yilmaz, Cohen, Porter- ACE/TAO

26

Combinatorial Structures Used

 Mandl (1985) uses Mutually Orthogonal Latin
Squares

* Browlie et al. (1992) uses Orthogonal Arrays

 D. Cohen, Dalal, Fredman, Patton, Parelius
(1996) uses Covering Arrays

27

Mutually Orthogonal Latin
Squares (MOLS)

0 |2 |3 0 |2

*Each row and each column contains all symbols

(0...s-1) exactly once.

Each pair of squares covers all s ordered pairs
{(0,0), (0,1),(0,2),...,(s-1,s-1)}

*We can use n MOLS to test a system with n+2

factors, each with s values.
28

Example

29

Example

30

Example

31

cell

square 1 square 2
cell

row
index

Col
Index

32

Example

Browser 08 Connection Printer
(row) {col) (latin Sq 1) (latin Sq 2)
Netscape Windows XP LAN Local
Netscape 05 X PPP Networked
IE Windows XP PPP Screen
IE 05X ISDN Local
IE Linux LAN Networked
Mozilla Windows XP ISDN Networked
Mozilla 0sX LAN Screen
Mozilla Linux PPP Local
Mappings

Netscape 2 0, IE = 1, Mozilla > 2
Win XP-> 0, OS X 2 1, Linux—> 2
LAN - 0, PPP > 1, ISDN = 2

Local = 0, Networked = 1, Screen—> 2

33

Method

« We create an s2 x (n+2) array.
(Each row will be a product line instance)

 The first two columns are the row and column
indices of the squares.

 For each row we fill the next n columns with the
cell entries of the n corresponding latin
squares.

34

Orthogonal Arrays

OA, (t,k,v)
— A vt x k array on v symbols where each N x t sub-array contains all
ordered t-sets exactly) times.

OA(3,4,2)

- = a0l 0/0 O
- - O O = -] O O
- | O = O OO O
- Ol O Ol 2|l

(8]

Orthogonal Arrays

OA, (t,k,v)

— A vt x k array on v symbols where each N x t sub-array contains all
ordered t-sets exactly) times.

OA(3,4,2)

- = a0l 0/0 O
- - O O = -] O O
- | O = O OO O
- Ol O Ol 2|l

Orthogonal Arrays

OA, (t,k,v)
— A Vvt x k array on v symbols where each N x t sub-array contains all ordered
f-sets exactly \ times.

OA(3,4,2)

- = a0l 0/0 O
- - O O = -] O O
- | O = O OO O
- Ol O Ol 2|l

Orthogonal Arrays

« Orthogonal arrays are used in statistical testing for
determining “main effects” because they are balanced.

But:
« They do not exist for all values of {k,v.

« They have the property that all f-sets occur exactly
once.

This property (exactly once) is more restrictive than is
needed for testing software.

38

Covering Arrays

CA, (N;tk,v)

— An N x k on v symbols array where each N x t sub-array
contains all ordered t-sefs at least A times.

(we can drop the A when A=1)
t is the strength of the array
CA(6:25,2)
1

0 1

- O =

Covering Arrays

CA, (N;tk,v)

— An N x k on v symbols array where each N x t sub-array
contains all ordered t-sefs at least A times.

(we can drop the A when A=1)
t is the strength of the array

CA(6.;2,5,2)
1

- O =

Covering Arrays

CA, (N;tk,v)

— An N x k on v symbols array where each N x t sub-array
contains all ordered t-sefs at least A times.

(we can drop the A when A=1)

t is the strength of the array

CA(6;2,5,2) /

0 1 1 1 1
1 0 «

0 0 0

0 1 1

0 .0 1

1 1 0 f1. | 0

/
41 win xp 0S X

Networked

Local
/

Covering Arrays

t strength (t-wise coverage)
k degree (number of factors)
v order (number of values)

A covering array is optimal if it contains the minimum
possible number of rows. We call this the covering
array number:

CAN(tK,V)

The covering array number is not known for all covering

arrays.

42

The Original Problem

Factor
Web Browser Operating Connection Printer
System Type Type
Value Netscape Windows XP | LAN Local
IE OS X PPP Networked
Mozilla Linux ISDN Screen

The product line has 4 factors, each with 3

values.

For pair-wise coverage: k=4, v=3, =2
a CA(N;2,4,3)

43

CA(9:2,4,3)

A set of product line instances that covers

(also an OA(2, 4 ,3))

all pair-wise interactions.

Config Browser 0S Connection | Printer

1 Netscape Windows XP LAN Local

2 Netscape Linux ISDN Networked
3 Netscape OS X PPP Screen

4 IE Windows XP ISDN Screen

) IE OS X LAN Networked
6 IE Linux PPP Local

7 Mozilla Windows PPP Networked
8 Mozilla Linux LAN Screen

9 Mozilla OSX 44 ISDN Local

Another CA(N;2,4,3)
Is this Optimal?

Config Browser 0S Connection | Printer

1 Netscape Windows LAN Local

2 Netscape Linux ISDN Networked

3 Netscape OS X PPP Screen

4 IE Windows ISDN Screen

) IE OS X LAN Networked

6 IE Linux PPP Local

7 Mozilla Windows PPP Networked

8 Mozilla Linux LAN Screen

9 Mozilla Windows PPP Local
Linux PPP Screen
OS X ISDN Local

45

References

R.Brownlie, J.Prowse, and M.S. Phadke, Robust testing of AT&T PMX/StarMAIL using
OATS,AT& T Technical Journal, vol.71 no. 3, pp. 41--47, 1992.

D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, The AETG system: an
approach to testing based on combinatorial design, IEEE Transactions on
Software Engineering, vol. 23, no.7, pp. 437--444, 1997.

D.M. Cohen, S. R. Dalal, M. L. Fredman, and G.~C. Patton, Method and system for
automatically generating efficient test cases for systems having interacting
elements, 1996, United States Patent, Number 5,542,043.

A. Hedayat, N.Sloane, and J. Stufken, Orthogonal Arrays,New York: Springer-Verlag,
19909.

46

References

D.R. Kuhn, D.R. Wallace and A.M. Gallo, Software fault interactions and implications
for software testing, IEEE Trans. Software Engineering, 30(6), 2004, pp. 418--

421.

R.Mandl, Orthogonal Latin squares: an application of experiment design to compiler
testing, Communications of the ACM, vol.28, no.10, pp. 1054--1058, 1985.

A.W. Williams and R.L. Probert, A practical strategy for testing pair-wise coverage of
network interfaces, In Proc. Intl. Symp. on Software Reliability
Engineering,(ISSRE), 1996 pp.~246--54.

C. Yilmaz, M .B. Cohen and A. Porter, Covering arrays for efficient fault
characterization in complex configuration spaces, IEEE Transactions on

Software Engineering, 31(1), 2006, pp. 20-34.

47

