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Introducing Esterel Technologies

� Esterel Technologies is a Software Editor

� We provide development tools and expertise services 
� Safety-Critical embedded software (SCADE Suite™, SCADE Drive™)

� Critical Electronic Components (Esterel Studio™)

� Our Customers are OEMs, Tier1s and Tier2s suppliers
� Aerospace & Defense 

� Automotive 

� Transportation

� Semiconductors & Electronics 

� Our Uniqueness 
� Software design tools and expertise services covering our customers’ design 
processes from specification to implementation

� Unique formal methods and technologies enabling automated & certified
implementation while meeting stringent safety requirements
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World-Wide Direct Presence 

New Jersey

Paris, Sophia Antipolis,

Toulouse

Bracknell

Munich

Shanghai, China

Mountain View, CA
Montreal, QC
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Development of safety critical software in aerospace

�Process driven
�DO-178B is mandatory

�DO-178B defines the objectives of the process, not its 
means

�Process is strictly requirements driven

�Each project is to be certified by public authorities (EASA, 
FAA…)
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The Chasm between 

Control and Software Engineering 

Control engineers

describe and analyse

systems in terms of block

diagrams and z-transfer

functions

Software engineers

describe software in

terms of tasks, flowcharts 

and memory
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Convergence of Initiatives

� Creation of formal synchronous data flow 
language:
� Data flow language ‘Lustre’, designed at IMAG 

(Grenoble, 1985)

� Control flow language ‘Esterel’ at École des Mines, 
Sophia Antipolis

� Industries developing safety critical software
� Aerospatiale created ‘SAO’ for Airbus

� Merlin-Gerin created ‘SAGA’ for nuclear power plant 
control

� SCADE product created in partnership with 
industry (Aerospatiale, Merlin-Gerin) (1995)

Photo courtesy of AIRBUS
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SCADE is a Bridge Between 

Control and Software Engineering 

SCADE maps 

control 

engineering 

constructs to 

rigorous software 

constructs.
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Block diagram SCADE Formal Data Flow

Mathematical Z 
operator 

SCADE pre
operator
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Simple notation 

familiar to both 

system and SW 

teams.
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SCADE: Safety-Critical Application Development 

Environment

�Unique model-based development environment that 
reconciles productivity and safety.

�Familiar graphical notation with block diagrams & state 
machines, rigorously defined and fully deterministic.

�Designed from the beginning for the development of DO-
178B projects up to level A. SCADE is also certified to IEC 
61508.

�SCADE Suite Automatic Code Generator is used in 
production for major recent DO-178B certification programs 
worldwide.The de-facto standard for the development of safety-

critical embedded software in the Avionics Industry.
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Introduction to SCADE semantics

�See technical SCADE introduction
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Development of safety critical software in aerospace

�Process driven
�DO-178B is mandatory

�DO-178B defines the objectives of the process, not its 
means

�Process is strictly requirements driven

�Each project is to be certified by public authorities (EASA, 
FAA…)
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System & SW Lifecycle 
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DO-178B life cycle structure
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DO-178 SW development processes
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Documentation Documentation
Documentation

& Code

Documentation

& Testing

Documentation

& Testing on target

Requirements 
Analysis 

Documentation

Design 
Documentation

Implementation 
Documentation
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What is Model Based Design?

Traditional Design Flow

Requirements

Analysis
Design Implementation

Integration

& Testing
Validation

�Sequential flow, iteration is expensive

�Manual code development, paper intensive, error prone,
resistant to change

�Project gets complex to manage by the end of the Integration phase
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Documentation

& Requirements Db

& Algorithm Spec
& Architecture Spec

Executable

Specification

Executable

Specification

& Generated Code

Simulation

& Testing
Simulation

& Testing on target

<<self>>/:System<<SCADE>>

What is Model Based Design?

Model Based Design Flow

Requirements

Analysis
Design Implementation

Integration

& Testing
Validation

�Build explicit architectures of predictable systems

�Go seamlessly from abstraction to realisation 

�Capitalize on V&V activities early and all along the development flow
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Model Based Tool Chain

�In the traditional design flow, testing activities start 
only once the object code is downloadable and 
executable on board

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

�It is recognized that it would be more efficient and 
less costly to perform earlier testing
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Model Based Tool Chain

�Now, let us imagine that all your tools, including 
your compiler and your code generator, give you a 
« certificate of correctness » (i.e. a guaranty that 
they never introduce an error)

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

�Then, you are capable to perform testing at model 
level …and finally go directly and safely down to the 
target!
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Reliable Encapsulation on Target 

�The guaranty of a 
reliable encapsulation 
of software components 
on target is ensured by 
AUTOSAR standard 

infrastructure

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

App
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Verification of Correct Compilation

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

�The source code generated by a « certified » code 
generator uses only a small subset of the C language, with 
a low level of complexity 

�A test suite can be built from all the C constructs that can 
ever be generated from the model, ensuring MC/DC 
coverage at object code level

�The subset approach is accepted by safety authorities

C 
code 
subset
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Verification of Correct Compilation: Process

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

Compare

Ref

Output

Test suite that 
ensures a MC/DC 

of 100% 

coverage

C 
code 
subset

Executable
Input 

Vector

Output 

vector
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Certified Code Generation

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

�A Certified C Code Generator generates simple C code 
that fits the constraints of safety-critical embedded software:
�Portable (compiler, target and OS independent)
�Structured (by function or by blocks)
�Readable, traceable (name/annotation propagation)
�Static memory allocation
�No pointer arithmetic
�No recursion, bounded loops only
�Bounded execution time
�Size or speed optimisation
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Certified Code Generation

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

� A Certified C Code Generator has been designed from 

the beginning with safety objectives: DO-178B, IEC 61508

� The expected benefits are:
� Remove the requirement to perform low level testing

� Enable cost effective functional verification at model level

� Reduce cycle time for requirements/model changes by 3X.

� Reduce time to market by 50%.
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Requirements-Based Model Verification

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

�Functional verification has to demonstrate that the software 
satisfies its requirements

� In a model-based approach, model simulation allows 
requirements-based tests to be performed at the model 
level for early detection of specification errors

�Concurently, Model Test Coverage analysis shall assess
how thoroughly a model has been explored by simulation
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Requirements-Based Model Verification

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

� Model Test Coverage (MTC) may reveal 
unintended functions, shortcomings in test 
procedures, and inadequacies in requirements

� As soon as MTC gives evidence that all 
elements of the model have been covered 
with respect to the requirements, the 
functional verification activity is done … 

down to the target!
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Correct-By-Construction Modelling

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

�Correct-by-Construction modelling relies on a graphical 
language that is very simple and stable, forbidding 
dangerous constructs (e.g. unbounded loops, wild goto’s, 
dynamic memory allocation,…) 

� Interpretation of a model does not depend on the reader or 
their environment

�Model checking is continuously allowed to preserve 
consistence of data types, clocks and sub clocks, data
dependencies, cycle detection, etc.
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In Summary: The SCADE Combined Testing 

Process

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

�SCADE Reqs-Based Model Testing & MTC

Model Coverage 

Analysis
Model 

Checking

Certified 
CodeGen

Compiler

Verification

�SCADE Editor: Design Consistency Checks

�IEC 61508 Certified SCADE KCG = No Low-Level Verification

�Compiler Verification Kit (CVK comprehensive test suite)
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SCADE Addresses the Applicative part
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Standardization of Platforms: ARINC 653

SCADE application

Safety Level: A

(High)
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SCADE Solution

The Market Leader

in Aerospace & Defense

for the Development

of Safety- and Mission-Critical Software
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Typical SCADE Aerospace & Defense Applications

�Flight control systems

�Power management

�Reconfiguration management

�Autopilots

�Engine control systems

�Braking systems

�Cockpit display and alarm 
management

�Fuel management
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Typical SCADE Automotive Applications

�Airbags

�Braking Systems, ABS & ESP

�Steering 

�Chassis & Suspension Systems

�Driver Assistance Systems

�Restraining systems

�Engine regulation

�X-By-Wire applications

i
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Typical SCADE Rail & Heavy Duty Applications

� Interlocking systems control

�Signaling

�Ground stations

�Automatic Train Operations

�Train Control Systems

�Heavy Duty Land systems
(tanks, tractors…)

i
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Typical SCADE Nuclear I&C Applications

� Reactor Protection Systems:
� Reactor limitation system

� Trip processing

� Emergency shutdown 

� Reactor trip breakers

� Nuclear Instrumentation Systems:
� Power measurement system

� Sensor controllers

� Pressurizer heating controllers 

� Rod position instrumentation systems

� Other Safety Systems
� Safety valve control system

� Control rod control systems 

i
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SCADE Successes: a few Facts & Figures

�Improved Productivity 
from 20 to 300 
SLOC/day

�80,000 SLOC Auto Generated
Subway 
Signaling 
System

ANSALDO

�60% Reduction in 
Development Cycle Time

�5X Reduction in Errors

�50% SLOC Auto Generated
Electrical 

Management 
System

PSA

�50% Reduction in 
Development Cycle Time

�90% Automatic PilotEC 155/135EUROCOPTER

�8X Reduction in Errors 
while Complexity 
Increased 4X

�200,000 SLOC Auto Generated 
from 1,200 Design Views

Nuclear Power 
Plant Safety 
Control

SCHNEIDER 
ELECTRIC

�20X Reduction in Errors

�Reduced Time to Market

Benefits Claimed

�70% Fly-by-wire Controls

�70% Automatic Flight Controls

�50% Display Computer

�40%Warning & Maintenance 
Computer

A340/500-600AIRBUS

Specified & Auto codedProductCompany
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US101

ECU (Augusta Westland)

A Few of the Current Projects Embedding SCADE

Shenzhou VII

VEGA rocket
(European Space Agency)

Boeing 787

ECU (Intertechnique)

A400M

Cockpit Display System (Thales Avionics)
Fuel Management System (Airbus, Intertechnique)
Doors & High Lift controllers (Saab Aerosystems)
Steering, Landing, Kneeling, Braking Systems (Messier-Bugatti)
Engine & Propeller Control Units (Diehl Avionik Systeme GmbH)
Electrical System Function & Oxygen System Control Unit (Intertechnique)

Russian Regional Jet

Cockpit Display System
& Flight Warning System (Sukhoï)

ARJ21

Landing Gear (ABSC)

PW210

FADEC (Pratt & Whitney)

A380

Electric Load Management Unit (Intertechnique)
Braking System, Fuel Management System & FADEC (Airbus)

Cockpit Display System, Electrical generation & FCU (Thales Avionics)
Control & Display System 

& Doors & Slides Management System (Diehl Avionik Systeme)
Braking & Steering Control Unit 

& Electrical Thrust Reverser Actuation Control (Messier-Bugatti)
…

Cessna Citation Encore

Engine (Pratt & Whitney Canada)
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Current SCADE Community

Civilian Avionics
� Aircraft Braking Systems

� Airbus

� CADI

� CLETRI

� Dassault Aviation 

� Diehl Avionik Systeme

� Elbit Systems

� Eurocopter

� FACRI

� GosNIIAS

� Honeywell CRL

� Intertechnique

� Liebherr-Aerospace

� Messier-Bugatti

� Pratt & Whitney 

� Rockwell Collins

� Saab Avitronics

� Snecma 

� Sukhoi

� Thales Avionics

� Turbomeca

� Silver Arrow

� Smiths Aerospace

Energy
� AREVA

� DS&S, owned by Rolls-Royce
� Framatome ANP

� NPIC

Defense & Space
� BAE SYSTEMS 

� CALT

� Dassault Aviation

� EADS Military

� EADS Space Transport

� EADS SD&E

� Elbit Systems

� ELV 

� ESA

� Eurocopter 

� Flight Dynamics 

� Goodrich 

� Hispano-Suiza 

� Lockheed Martin

� MBDA

� NASA

� Sagem

� SAST

� Thales Airborne Systems

� United Arab Emirates Air 

Force 

� US Air Force

Automotive
� Audi

� Daimler Chrysler

� Denso

� FTE

� General Motors

� Johnson Controls

� Nissan

� Renault

� PSA Peugeot Citroën

� Toyota

Transportation
� Alstom Transportation

� Ansaldo Signal

� Qinetiq

� …

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200638

Recent SCADE “Demos”

April 27th, 2005 - The first Airbus A380 to take 
to the air landed at Blagnac international 
airport, at 14.23 local time, after successfully 
completing a first flight that lasted three hours 
and 54 minutes.

A380 maiden flight – April 27th, 2005

April 23rd, 2005 - Cessna Aircraft Company 
celebrated the first flight of the Citation Mustang, 
its newest entry-level business jet, an American 
aircraft equipped with an engine controlled by 
100% SCADE generated code.

Citation Mustang maiden flight – April 23rd, 2005

F7X maiden flight – May 5th, 2005

May 5th, 2005 - The new Falcon 7X business jet 
from Dassault Aviation made its first test flight, 
from Bordeaux-Merignac. Its Flight Control and 
its Braking Systems have SCADE & KCG inside. 
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• Declarative language

– Typed & Structured 

– Hierarchical

– Deterministic semantics 

• Provides safe execution

– No inner loop, no dynamic allocation

– Maximum time of computation can be 
calculated

• Based on LUSTRE (textual synchronous 
data-flow language)

– Developed at Verimag: www-verimag.imag.fr

SCADE Language Properties

5555 © 2005 Esterel Technologies

Nodes

• Block diagram nodes

– Boxes with an I/O interface defining new 
operators for reuse and hierarchy

– Inner body can be either graphical or textual

• State machine nodes

– Flat State Machines

– Safe State Machines (SSM)

• Imported nodes (C or Ada functions)

– Nodes defined in C or Ada code extending the 
language expressivity

6666 © 2005 Esterel Technologies

• Graphical SCADE representation

– A node is a block diagram

The node is seen as a black box and is connected

through its formal I/O interface.

• Textual SCADE representation
node Counter1(init,incr: int; reset: bool)
returns (count: int ) ;

node Counter2(init,incr: int; hidden reset: bool) 
returns (count: int ) ;

Block Diagrams (1/2)

7777 © 2005 Esterel Technologies

• A block diagram example

• Textual SCADE representation

count = init -> if reset then init
else pre (count) + incr;

Block Diagrams (2/2)

8888 © 2005 Esterel Technologies

• Nodes graphical definitions are automatically 

translated into textual SCADE

• Also possible to define nodes textually

• Both graphical and textual SCADE are case 

sensitive

Textual Nodes
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Flat State Machines

• A single initial state

• Transition labels = 

Textual SCADE 

Boolean predicates

• Transitions have 

priorities to ensure 

determinism

• For each state, an 

output with same name 

is created

:::: © 2005 Esterel Technologies

SSM Overview

• Graphical Elements:

– Simple states as ovals or 
rectangles, transitions as 
arrows, macro-states as 
rectangle boxes

• Textual Elements:

– Input, outputs, and state 
names

– Trigger expressions for 
transition firing condition

– Actions expressions related 
to transitions firing and state 
activities

;;;; © 2005 Esterel Technologies

SSM Features

Set output O as soon as input A and 

input B have been received. Reset 

the whole behavior when input R is 

received.

Concurrency

A and B are independent

Sequencing

O follows AB

Hierarchy

Macro-states

Preemption

R resets the entire behavior

32323232 © 2005 Esterel Technologies

• The aim of an imported 

node is to describe 

processing for which 

SCADE language is not 

suitable

– The node name and the 

interface is defined in 

SCADE, but not the body

– The implementation will be 

provided into the target 

language

Imported Nodes

/**************************************/
/* My ADD function                    */
/**************************************/
#include "scade_types.h"
void ImpADD (int A, int B, int *Sum)
{

*Sum = A + B;

}

33333333 © 2005 Esterel Technologies

• The if-then-else operator

– Expresses a decision 

– Because of the data-flow semantics, both “then” and 

“else” expressions are always evaluated independently 

of the condition value.

– Example 

• Count1 and Count2 are 2 counters

• S = if c then count1() else count2();

�Each counter will be incremented

at each execution cycle regardless

of the Boolean flow c

�Note that this semantic suits well

with the usual intuition when

reading the equivalent graphical flow 

Some Choice Operators (1/2)

34343434 © 2005 Esterel Technologies

• The case operator
– It ‘s a switch

– 2N+1 inputs and 1 output 

• N inputs ei, each corresponding to a possible value for the output

• N inputs, each associated with a possible effective input ei and a 

“default” value

• 1 input : a switch whose value is compared with each label

– All the inputs are computed before the choice

– Example 
S = case es of

3 : (e1)

-2 : (e2)

C2 : (e2)

default : (e3);

����if es=3 then S=e1 else if es=-2 or C2 then S=e2 

else for all others S=e3

Some Choice Operators (2/2)
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• The -> initialization operator

– Allows expressions to be initialised 

– During the first cycle, the previous value is indefinite 

– Example: 

Some Temporal Operators (1/3)

e4e3e2e1E

f4f3f2e1E->F

f4f3f2f1F

36363636 © 2005 Esterel Technologies

• The  pre delay operator

– Allows a trace of the value of an expression to be 

kept from one cycle to another 

– During the first cycle, the previous value is indefinite 

– Example: 

Some Temporal Operators (2/3)

e2e1nilY1Y1->pre(pre(E))

a3+b3a2+b2a1+b11010->pre(a+b)

e3e2e111->pre(E)

e3e2e1nilpre(E)

e4e3e2e1E

37373737 © 2005 Esterel Technologies

• The fby delay operator

– Allows a trace of the value of an expression to be 
kept over several cycles  

– Introduces a delay

– The number of cycles must be a strictly positive 
integer value 

– Example

– fby(E,n,Init) is equivalent to :

Init -> pre(Init -> pre(...-> pre(E)))

Some Temporal Operators (3/3)

e2

e4

e3e1InitInitfby(E,2,Init)

e5e3e2e1E

38383838 © 2005 Esterel Technologies

Clock Principles

• Clocks allow sub-systems to run at 

different rates

• The availability of a flow is defined by its 

clock. It is the rate at which it is sampled

• An operator is executed when all its inputs 

are available. This defines the clock of an 

operator

• Clocks are supported by the WHEN, 
CURRENT and CONDACT

39393939 © 2005 Esterel Technologies

• WHEN samples variables 
on slower rate.

• CURRENT projects variables 
on faster rate.

• Let ‘s assume that :
X = ( x1, x2, x3, x4, x5, x6, x7…)

The X flow is defined for each cycle. It is on the 
basic clock of the operator in which it is used.

C = (T, F, T, T, F, F , T,…)

WHEN & CURRENT (1/4)

3:3:3:3: © 2005 Esterel Technologies

t1      t2     t3      t4      t5     t6      t7          t

X           x1     x2     x3     x4     x5    x6     x7

Clock C             T      F T       T       F      F T  

Y=X when C           x1               x3     x4                 x7

Z=current(Y)           x1 x1 x3     x4 x4    x4 x7

• The Y flow is defined only when C is true

• The Z is defined on the basic clock of the operator

in which it is used

WHEN & CURRENT (2/4)
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t1      t2     t3      t4      t5     t6      t7          t

X           x1     x2     x3     x4     x5    x6     x7

Clock C             F      F T       T       F      F T  

Y=X when C                             x3     x4                x7

Z=current(Y) nil       nil x3    x4 x4    x4 x7

What would happen if C was false at the first tick ?

• Nil means that the value is indefinite at this cycle

WHEN & CURRENT (3/4)

42424242 © 2005 Esterel Technologies

• Filtering the inputs

• Filtering the outputs

WHEN & CURRENT (4/4)

43434343 © 2005 Esterel Technologies

A “CONDACT” takes place 
for both WHEN and 
CURRENT

It issues the output 
initialisation value used at 

the first clock cycle

Using CONDACT (1/4)

Corresponding 
implementation using 

WHEN and CURRENT :

44444444 © 2005 Esterel Technologies

t1       t2        t3         t4        t5        t6      t7     t

X             x1     x2       x3        x4       x5       x6 x7

Clock C         T        F T         T         F         F T  

Y1= Y1 Y3=       Y4= Y4 Y4 Y7=

Op(x1) Op(x3)  Op(x4) Op(x7)

Y=condact

(Op(X),C, 

Y1init)

Using CONDACT (2/4)

45454545 © 2005 Esterel Technologies

What would happen if C was false at the first tick ?

t1       t2        t3         t4        t5        t6      t7     t

X             x1     x2       x3        x4       x5       x6 x7

Clock C         F        F T         T         F         F T  

Y1init Y1init Y3=      Y4= Y4 Y4 Y7=

Op(x3)  Op(x4) Op(x7)

Y=condact

(Op(X),C, 

Y1init)

Using CONDACT (3/4)

46464646 © 2005 Esterel Technologies

Right-click on the node and select Operator to Condact

Using CONDACT (4/4)
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Exercise

48484848 © 2005 Esterel Technologies

• Textual representation
node RisingEdge (c: bool) returns (edge: bool);

let

edge = c →→→→ c and not pre(c);

tel;

• Graphical representation

M1-C1 Exercise 1

Fghkpg"vjg"vgzvwcn"cpf"vjg"itcrjkecn"tgrtgugpvcvkqpu"
qh"vjg"FallingEdge pqfg"yjkej"fgvgevu"c"vtwg/hcnug"
ugswgpeg0

49494949 © 2005 Esterel Technologies

M1-C1: SCADE Designing

• SCADE Requirements and Design 

Approach

–High-Level Requirements

– Preliminary Design

– Design

4:4:4:4: © 2005 Esterel Technologies

High and Low-Level Requirements

4;4;4;4; © 2005 Esterel Technologies

High-Level Requirements

• SCADE can be used to describe part of the High Level 

Requirements

• The SCADE model is part of the software requirements 

document, which contains also text

• At this stage, the SCADE model is incomplete and 

serves to identify:

– High level functions and data flows

– Root subsystem interface

– Main states

52525252 © 2005 Esterel Technologies

High-Level Requirements

Example top-level functions and interfaces

Sensors

PilotCommands

Sensors

ControlLaws

StatusLightsButtons

Elevator_cmd

ControlLogic

Throttle_cmd
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Do a functional decomposition of the 

application
1. Identify the inputs/outputs of the system

2. Identify main functions and states

3. Describe the relations between the functions

• Decomposition in sub-systems

• Decomposition of data

• Definition of the network view

• Distribute sub-systems to team members for large 

projects

High-Level Requirements

54545454 © 2005 Esterel Technologies

• Using blocks diagrams and state transitions 

diagram in SCADE:

– Only hierarchy and data-flows are specified.

– The low-level components remain empty or are 

described in natural language (annotations).

Example: a low-pass filter is not described at this 

level.

– The input/output functions are not described.

– The types of the data are not completely defined.

High-Level Requirements

55555555 © 2005 Esterel Technologies

Preliminary Design

Identify what will be developped in SCADE 

and what will be developped manuallay

56565656 © 2005 Esterel Technologies

• Refinement process: divide and conquer

– Decompose according to
• identified functionalities

• data

• temporal aspects

– And also keep in mind development quality 
criteria
• reusability (targeted on the library operators)

• readability of the description (documentation)

• testability 

• parallel development 

• etc.

Software Design

57575757 © 2005 Esterel Technologies

• Applications usually contain
– an event-driven part

– a data-driven part

• Usually the event driven part pilots the data 
driven one. Some functions of the event-driven 
part are data-driven sub-systems

• Inside SCADE, Flat Sate Machines or SSMs can 
be used to describe the event-driven parts

Divide and Conquer

58585858 © 2005 Esterel Technologies

SCADE SSM used to describe 

complex event driven part

Divide and Conquer
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• Develop the algorithms of the basic components:
– with data-flow description (using SCADE)

– in a sequential way (using imported operators)

• Select and use libraries
– Improve consistency and quality

• Reiterate at sub-systems level
Stop when reaching basic operators, library nodes or 
imported nodes.

Complete the Design

5:5:5:5: © 2005 Esterel Technologies

Software Coding

• Develop the code of the input/output 
functions

• Develop the code of the components which 
are not described in SCADE

• Generate the code of the whole SCADE 
model according to the compiling mode 
chosen during the software design

5;5;5;5; © 2005 Esterel Technologies

State Machines for State-based Logic

• Boxes are states

• Arcs are transitions

• States and transition have labels to attach 
names and behavior

• Commonly used for modeling control flow
and decision logic with intuitive meaning

62626262 © 2005 Esterel Technologies

Domains of Application

• Groups of displays
�Hierarchy for the
organization

Airplane Cockpit Display management

• States machines for managing the configurations 

and the interactions with pilots

• Several displays
�Parallelism for the
concurrent behaviors

• There are alarms
�Preemption to display them in priority

Source: www.nasa.gov

63636363 © 2005 Esterel Technologies

Domains of Application

• Seat Memory
– State machines to memorize the seat 
position preferences and their settings

� Hierarchy for the preferences

• Cruise Control
– State machines to decide the 
functioning modes according to the 
speed, user requests, events, etc.

� Preemption for exceptional cases

• Multimedia Infotainement Systems
– States machines to handle the 
modes, displays, user interface

� Hierarchy, parallelism, preemption

Car Control and Comfort

64646464 © 2005 Esterel Technologies

Domains of Application

• State machines for controlling the 
communication aspects of a protocol

– Data read and
data write with buses

– Encoding / Decoding
logic

– Bus access arbitration

– Examples: ARINC, CAN, TTP.

� Parallelism, hierarchy, preemption (reset)

Communication Protocols

Source: www.condoreng.com
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Summary of the Need

• State Machines for modeling and designing the 

control logic aspects of applications with the 

following fundamental modeling means:

– Parallelism modeling for capturing the concurrent 

behaviors

– Hierarchy for design architecture

– Preemption for handling exceptions

• Smooth and consistent mix with data-flow design

� SCADE Safe State Machine is the solution!

66666666 © 2005 Esterel Technologies

Software development process

System development process

System informal

specification

System Prototyping

SCADE Editor

SCADE Editor

SCADE Code

Generator

Software

Integration

process

High-Level Requirements

& Architecture

Low-Level Requirements

& Architecture

Source Code

System Requirements

allocated to Software Software Requirements

process

Software coding process

Software design process

SSM Editor

SSM Editor

SCADE Software

Development

67676767 © 2005 Esterel Technologies

SSM in SCADE

• Capture the state-based logic of an 

application

• State machine based graphical 

formalism with parallelism and hierarchy

• Cycle-based computing model

• Tightly coupled with the SCADE data-

flow language

• Formal semantics with deterministic 

computation model

68686868 © 2005 Esterel Technologies

SSM Overview

• Graphical Elements:

– Simple states as ovals or 
rectangles, transitions as 
arrows, macro-states as 
rectangle boxes

• Textual Elements:

– Input, outputs, and state 
names

– Trigger expressions for 
transition firing condition

– Actions expressions related 
to transitions firing and state 
activities

69696969 © 2005 Esterel Technologies

SSM Node Naming

• The node name can be propagated on 

the file name on demand

Open Tools � Options � General tab

Select to have a 

dialog box entry to 

edir the SSM node 

name

Select to propagate 

the SSM node 

name to the 

underlying file name

6:6:6:6: © 2005 Esterel Technologies

SSM Node Characteristics

• Share the SCADE predefined types

• Share all the user constants

• Share the imported type declarations

• Share all the functions related to the imported 

nodes C functions with one output

floatreal

integerint

booleanbool

SSMSCADE
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SSM Editor Overview

SSM edition 

area

SSM editor 

output

SSM 

workspace 

objects

Toolbars 

and menus

72727272 © 2005 Esterel Technologies

The SSM Inputs and Outputs

73737373 © 2005 Esterel Technologies

SSM Inputs and Outputs

• SSM I/O signals are declared 

at the SCADE SSM node 

level

• 3 kinds of signals:

– Pure (bool)

– Valued (tuple [bool,type])

– Value-only (type)

74747474 © 2005 Esterel Technologies

SSM Inputs and Outputs

Pure Signals

• Carry a Boolean presence status: 

true when present false when 

absent

• At each cycle, absent by default 

and present if there is some 

emitter in the cycle

• Predefined signal tick, as the 

SSM global clock, always 

present

• Inputs are set by the environment

75757575 © 2005 Esterel Technologies

SSM Inputs and Outputs

Valued Signals

• Equivalent to SCADE flows of 
type

[bool,type]
where bool is the presence 
status; type can be: bool, int, 
real, or any SCADE type

• Library libssm provides 
shortcuts type_signal where 
type can be bool, int, or real

• Outputs must be provided with 
an initial value

76767676 © 2005 Esterel Technologies

SSM Inputs and Outputs

Value-only Signals

• Equivalent to SCADE flows of 
same type

• Possible types: bool, int, 
real, and all user-defined 
SCADE types

• Assigned a new value from a 
single emission in a cycle 
otherwise, keeps the value of 
previous cycle

• Outputs must be provided with 
an initial value
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Which Signal Kind?

Same as value-only and having 

additionally a status to characterize the 

cycles where it makes sense to analyze 

the value

Valued

To model a data-value whose value is 

likely to be coming from the environment 

or from a continuous internal computation

Value-only

To model a logical event whose lifetime 

and consideration is only meaningful in a 

cycle of execution: alarm, threshold 

detection

Pure

78787878 © 2005 Esterel Technologies

The SSM States

79797979 © 2005 Esterel Technologies

SSM States (1/3)

• Simple State

– Graphical oval or rectangle that can be named

– Basic memory element of a SSM

– At each cycle, is either active or not active

To draw the simple states as rectangles, edit the text file 

estudio_ssm.cfg in your application data settings and set 

RECT_SIMPLE_STATES  = 1.

i

7:7:7:7: © 2005 Esterel Technologies

SSM States (2/3)

• Macro-state

– Graphical box that can be named

– SSM container

– At each cycle, it is either active or not active

– When active, at least one state of the sub-
SSM it contains is active

7;7;7;7; © 2005 Esterel Technologies

Creating a State

1. Select the 

state or macro-

state creation 

button

2. Drag and drop 

the selection in 

the edition area

82828282 © 2005 Esterel Technologies

State Basic Attributes

Name: a SCADE identifier, 

e.g. AlarmON, FlightMode, 

Temperature

Mark as initial or final
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Initial State

• Graphically depicted as
a bold circle for simple states 
and a bold box for macro-states

• The initial states is active 
whenever the SSM is started or 
the macro-state it is in is 
activated

• Right-click on the state and 
select Toggle initial to set it as 
initial

84848484 © 2005 Esterel Technologies

Final States

• Also called terminal, graphically 

denoted as a doubled circle

• Only simple states can be final

• When reached, means that the 

SSM activity terminates (treated 

later)

• Right-click on the state and 

select Toggle final to set it as 

final

85858585 © 2005 Esterel Technologies

Other State Properties

• State look-and-feel is 

customizable

– Font of state label

– Line style

– Colors

– Comments

86868686 © 2005 Esterel Technologies

Local Signals

Defined in the scope of a 

macro-states as a comma 

separated list of signal 

declarations.

Can be read or produced 

at any part of the contents 

of the macro-state

Right-click in the macro-

state area and select 

Properties.

Local signals can be pure, 

valued, or value-only, 

possibly initialized

87878787 © 2005 Esterel Technologies

The SSM Transitions

88888888 © 2005 Esterel Technologies

SSM Transitions

• Have one source state, and one target state

• If source state is active, preempts the activity 

of source state starting the activity of target 

state

• A transition can be fired the next cycle after 

the cycle their source has started activity.
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Creating a Transition

1. Select the transition 

creation button.

2. Click in the source 

state and drag to the 

target state. Release 

button when 

highlighting the target 

state.

8:8:8:8: © 2005 Esterel Technologies

Other Transition Properties

• Transition look-and-feel 
can be customized:

– Font for labels

– Line style

– Comments 

8;8;8;8; © 2005 Esterel Technologies

Transition Trigger

Fire transition upon the presence of a signal.

• If Signal ON is present (true), and if State 

OFF is active, then preempts State OFF and 

activates State ON.

• Signal ON can be an input from the SSM 

context, an output produced by the SSM, or 

an emitted local signal.

92929292 © 2005 Esterel Technologies

Transition Trigger

Enter transition 

trigger as a Boolean 

expression of signal 

presence statuses:

(A and not(B))

(C or D).

Right-click on 

transition and open 

Properties.

Click on Apply or 

OK to validate.

Transition priority.

93939393 © 2005 Esterel Technologies

Transition Priorities

• Priorities are automatically set 
by the Editor as soon as a 
state has two or more outgoing 
transitions

• To ensure determinism, when 
two transitions have a true 
triggering condition, only the 
one with highest priority is 
fired.

• Implicit negation of all triggers 
from highest transition

Q: What if transition of 

priority <2> is fired?

94949494 © 2005 Esterel Technologies

Transition Effect

Perform an action while firing a transition

• If Signal ON is present (true), and if State 

OFF is active, then preempts State OFF and 

activates State ON.

• Perform an action: emits the signal SET_ON.

• Signal SET_ON is an output produced by the 

SSM.
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Transition Effect

Trigger: has to be 

true to fire the 

transition.

Effect: list of signal 

to emit while firing 

the transition.

96969696 © 2005 Esterel Technologies

Signal Emission

• Emitted signals are broadcast to the whole 

SSM the signal is defined in.

• In a given cycle, if a signal is emitted then:

– It is present in that cycle (pure and valued signals).

– For value-only and valued, the new value is 

accessible for any reader in that cycle.

– It is guaranteed that any reader is always 

scheduled after any updated.

97979797 © 2005 Esterel Technologies

Valued Signals Syntax

• To read the value of a valued or value only signal S, 
write ?S

{ ?Pressure > 10.0f }

• To emit a valued signal S with value val, write 

S(val), where can be:

– A constant value: Alarm(false), Level(LOW), 
Speed(90), Angle(0.5f)

– The value of another signal: MaxSpeed(?Speed)

– The return value of a function call:
Speed(Max(?X,?Y)), Alarm(ValveOpen())

– The result of an arithetic expression over values:
MaxSpeed(?Speed + Max(?X,?Y) + 1)

98989898 © 2005 Esterel Technologies

The pre Operator

• Access the previous status or value of a 
signal

• For any signal S, pre(S) is the value of 
the status at the previous cycle

• For a valued or value-only signal V, 
pre(?V) is the value of the data carried 
by V at the previous cycle

• The pre operator cannot be applied on 
itself

99999999 © 2005 Esterel Technologies

Transition Labeling (1/3)

Count Event condition { Data condition } / Effect

Trigger

Trigger:

Data condition

Trigger:

Event condition

Effect: signal 

emissions

9:9:9:9: © 2005 Esterel Technologies

Transition Labeling (2/3)

• Trigger: Conjunction (AND) of two conditions
– Event condition: A formula of signal statuses, 
e.g.: A and not(B)

– Data condition: A formula of data conditions surrounded 
by “{ }”, e.g. { ?Level >= 10 and (Max(?A,?B) < ?C) }

• An optional counter Count: number of times the 
entire trigger has to be true

5 times tick

3 times CLICK {?KEY = SHIFT}

Count Event condition { Data condition } / Effect

Trigger
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Transition Labeling (3/3)

• Effect: List of signal emissions:
Sum(pre(?Sum)+1), AlarmOn, StopEngine

Count Event condition { Data condition } / Effect

Trigger

:2:2:2:2 © 2005 Esterel Technologies

Transition and Initial States

• At the initial cycle, the initial state’s transitions 

are immediately fire-able.

• At the other cycles, the initial state behaves 

like any other state.

• Exercise: explain the difference between the 2 

SSM below:

:3:3:3:3 © 2005 Esterel Technologies

Transition and Terminal States

• A final state cannot have 
outgoing transitions: it is a 
transient state, not a state 
memory element where time 
can elapse.

• When a triggered transition 
reaches a final state, the 
SSM or macro-state it 
belongs to ends its 
execution

:4:4:4:4 © 2005 Esterel Technologies

Transition: Summary

• At most one transition is fired in a cycle

• A transition can be fired if its trigger condition is 
true and:
– If its source was active at the previous cycle, or

– At the initial cycle if its source state is the initial state.

• Label of the form:
Count Event condition { Data condition } / Effect

where:
– Count: occurrence count for the event condition

– Event condition: Boolean expression testing signal 
presence statuses.

– Data condition: Boolean expression testing values of 
signals and functions

– Effect: list of signal emissions.

:5:5:5:5 © 2005 Esterel Technologies

The SSM State Behavior

• Macro-states

• Actions in states

:6:6:6:6 © 2005 Esterel Technologies

Macro-states

• State containing a sub-SSM

– When activated, activates immediately the SSM is contains

• Hierarchy construct

– To increase the readability and maintainability

– To comply with software functional architecture constraints
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Action Attributes

OnInside: Action list to 

execute when inside the state

OnEntry: Action list to execute 

when entering the state.

Actions can be performed upon the activity status of a state

and are expressed the same way as transition effects

An initial state active at the first 

cycle behaves as if it is entered :

- OnEntry actions are executed,

- OnInside actions are not executed. 

i

:8:8:8:8 © 2005 Esterel Technologies

Example: Sustaining a Signal (1/2)

Emit a signal whenever a state is active

• Solution 1: create a transition that emits the 

signal as long as the state is active

:9:9:9:9 © 2005 Esterel Technologies

Example: Sustaining a Signal (2/2)

Emit a signal whenever a state is active

• Solution 2: create an OnInside action to the 

state

To execute the 

action also when 

entering the state

:::::::: © 2005 Esterel Technologies

Example


