
1

1 Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 2006

Model- Based Software Development for 

Safety- Critical Systems

Methodology and Application

Jakob Gärtner

Esterel Technologies

STRESS 2006
Summer School on Tool- Based Rigorous Software Engineering

Dortmund, May 19, 2006

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 20062

Introducing Esterel Technologies

� Esterel Technologies is a Software Editor

� We provide development tools and expertise services 
� Safety-Critical embedded software (SCADE Suite™, SCADE Drive™)

� Critical Electronic Components (Esterel Studio™)

� Our Customers are OEMs, Tier1s and Tier2s suppliers
� Aerospace & Defense 

� Automotive 

� Transportation

� Semiconductors & Electronics 

� Our Uniqueness 
� Software design tools and expertise services covering our customers’ design 
processes from specification to implementation

� Unique formal methods and technologies enabling automated & certified
implementation while meeting stringent safety requirements

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 20063

World-Wide Direct Presence 

New Jersey

Paris, Sophia Antipolis,

Toulouse

Bracknell

Munich

Shanghai, China

Mountain View, CA
Montreal, QC

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 20064

Development of safety critical software in aerospace

�Process driven
�DO-178B is mandatory

�DO-178B defines the objectives of the process, not its 
means

�Process is strictly requirements driven

�Each project is to be certified by public authorities (EASA, 
FAA…)

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 20065

The Chasm between 

Control and Software Engineering 

Control engineers

describe and analyse

systems in terms of block

diagrams and z-transfer

functions

Software engineers

describe software in

terms of tasks, flowcharts 

and memory
Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 20066

HighLimit

out

IReset

1

Ki

1

IntegrTrapez

T L HR

LowLimit

in

DeltaT

1

L H

2

mesure

HighLimit

LowLimit

Kp

Convergence of Initiatives

� Creation of formal synchronous data flow 
language:
� Data flow language ‘Lustre’, designed at IMAG 

(Grenoble, 1985)

� Control flow language ‘Esterel’ at École des Mines, 
Sophia Antipolis

� Industries developing safety critical software
� Aerospatiale created ‘SAO’ for Airbus

� Merlin-Gerin created ‘SAGA’ for nuclear power plant 
control

� SCADE product created in partnership with 
industry (Aerospatiale, Merlin-Gerin) (1995)

Photo courtesy of AIRBUS



2

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 20067

SCADE is a Bridge Between 

Control and Software Engineering 

SCADE maps 

control 

engineering 

constructs to 

rigorous software 

constructs.

FBY

10.0

throttlegamma

Spd

Alt

ComputeThrot tle

ComputeTargetSpeed

ComputeTargetAlt itude

Block diagram SCADE Formal Data Flow

Mathematical Z 
operator 

SCADE pre
operator

xazy
1−

= )(* xpreay =

Simple notation 

familiar to both 

system and SW 

teams.

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 20068

SCADE: Safety-Critical Application Development 

Environment

�Unique model-based development environment that 
reconciles productivity and safety.

�Familiar graphical notation with block diagrams & state 
machines, rigorously defined and fully deterministic.

�Designed from the beginning for the development of DO-
178B projects up to level A. SCADE is also certified to IEC 
61508.

�SCADE Suite Automatic Code Generator is used in 
production for major recent DO-178B certification programs 
worldwide.The de-facto standard for the development of safety-

critical embedded software in the Avionics Industry.

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 20069

Introduction to SCADE semantics

�See technical SCADE introduction

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200610

Development of safety critical software in aerospace

�Process driven
�DO-178B is mandatory

�DO-178B defines the objectives of the process, not its 
means

�Process is strictly requirements driven

�Each project is to be certified by public authorities (EASA, 
FAA…)

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200611

System & SW Lifecycle 

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200612

DO-178B life cycle structure



3

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200613

DO-178 SW development processes

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200614

Documentation Documentation
Documentation

& Code

Documentation

& Testing

Documentation

& Testing on target

Requirements 
Analysis 

Documentation

Design 
Documentation

Implementation 
Documentation

OK

KO

KO

OK

KO

OK

KO

OK

What is Model Based Design?

Traditional Design Flow

Requirements

Analysis
Design Implementation

Integration

& Testing
Validation

�Sequential flow, iteration is expensive

�Manual code development, paper intensive, error prone,
resistant to change

�Project gets complex to manage by the end of the Integration phase

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200615

Documentation

& Requirements Db

& Algorithm Spec
& Architecture Spec

Executable

Specification

Executable

Specification

& Generated Code

Simulation

& Testing
Simulation

& Testing on target

<<self>>/:System<<SCADE>>

What is Model Based Design?

Model Based Design Flow

Requirements

Analysis
Design Implementation

Integration

& Testing
Validation

�Build explicit architectures of predictable systems

�Go seamlessly from abstraction to realisation 

�Capitalize on V&V activities early and all along the development flow

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200616

Model Based Tool Chain

�In the traditional design flow, testing activities start 
only once the object code is downloadable and 
executable on board

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

�It is recognized that it would be more efficient and 
less costly to perform earlier testing

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200617

Model Based Tool Chain

�Now, let us imagine that all your tools, including 
your compiler and your code generator, give you a 
« certificate of correctness » (i.e. a guaranty that 
they never introduce an error)

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

�Then, you are capable to perform testing at model 
level …and finally go directly and safely down to the 
target!

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200618

Reliable Encapsulation on Target 

�The guaranty of a 
reliable encapsulation 
of software components 
on target is ensured by 
AUTOSAR standard 

infrastructure

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

App



4

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200619

Verification of Correct Compilation

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

�The source code generated by a « certified » code 
generator uses only a small subset of the C language, with 
a low level of complexity 

�A test suite can be built from all the C constructs that can 
ever be generated from the model, ensuring MC/DC 
coverage at object code level

�The subset approach is accepted by safety authorities

C 
code 
subset

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200620

Verification of Correct Compilation: Process

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

Compare

Ref

Output

Test suite that 
ensures a MC/DC 

of 100% 

coverage

C 
code 
subset

Executable
Input 

Vector

Output 

vector

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200621

Certified Code Generation

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

�A Certified C Code Generator generates simple C code 
that fits the constraints of safety-critical embedded software:
�Portable (compiler, target and OS independent)
�Structured (by function or by blocks)
�Readable, traceable (name/annotation propagation)
�Static memory allocation
�No pointer arithmetic
�No recursion, bounded loops only
�Bounded execution time
�Size or speed optimisation

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200622

Certified Code Generation

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

� A Certified C Code Generator has been designed from 

the beginning with safety objectives: DO-178B, IEC 61508

� The expected benefits are:
� Remove the requirement to perform low level testing

� Enable cost effective functional verification at model level

� Reduce cycle time for requirements/model changes by 3X.

� Reduce time to market by 50%.

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200623

Requirements-Based Model Verification

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

�Functional verification has to demonstrate that the software 
satisfies its requirements

� In a model-based approach, model simulation allows 
requirements-based tests to be performed at the model 
level for early detection of specification errors

�Concurently, Model Test Coverage analysis shall assess
how thoroughly a model has been explored by simulation

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200624

Requirements-Based Model Verification

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

� Model Test Coverage (MTC) may reveal 
unintended functions, shortcomings in test 
procedures, and inadequacies in requirements

� As soon as MTC gives evidence that all 
elements of the model have been covered 
with respect to the requirements, the 
functional verification activity is done … 

down to the target!



5

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200625

Correct-By-Construction Modelling

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

�Correct-by-Construction modelling relies on a graphical 
language that is very simple and stable, forbidding 
dangerous constructs (e.g. unbounded loops, wild goto’s, 
dynamic memory allocation,…) 

� Interpretation of a model does not depend on the reader or 
their environment

�Model checking is continuously allowed to preserve 
consistence of data types, clocks and sub clocks, data
dependencies, cycle detection, etc.

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200626

In Summary: The SCADE Combined Testing 

Process

Software Development Project

Object 
code

System
Requirements

Software
Requirements

Design

CompilerCodeGen C code

�SCADE Reqs-Based Model Testing & MTC

Model Coverage 

Analysis
Model 

Checking

Certified 
CodeGen

Compiler

Verification

�SCADE Editor: Design Consistency Checks

�IEC 61508 Certified SCADE KCG = No Low-Level Verification

�Compiler Verification Kit (CVK comprehensive test suite)

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200627

SCADE Addresses the Applicative part

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200628

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200629

Standardization of Platforms: ARINC 653

SCADE application

Safety Level: A

(High)

30 Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 2006

SCADE Solution

The Market Leader

in Aerospace & Defense

for the Development

of Safety- and Mission-Critical Software



6

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200631

CKTDWU"突 C562/822"("C5:2

Typical SCADE Aerospace & Defense Applications

�Flight control systems

�Power management

�Reconfiguration management

�Autopilots

�Engine control systems

�Braking systems

�Cockpit display and alarm 
management

�Fuel management

Fcuucwnv Cxkcvkqp"突 Hcneqp"9Z

i
WU"Ckt"Hqteg"/ H38

GWTQEQRVGT"突 GE367

Cgtqgpikpgu"d{"Upgeoc
®Upgeoc1Uvwfkq"Rqpu

Fcuucwnv"Cxkcvkqp"/ Tchcng

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200632

Typical SCADE Automotive Applications

�Airbags

�Braking Systems, ABS & ESP

�Steering 

�Chassis & Suspension Systems

�Driver Assistance Systems

�Restraining systems

�Engine regulation

�X-By-Wire applications

i

DOY"oqvqte{engu

CWFK"/ C:

Ogtegfgu"突 Encuu"U

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200633

Typical SCADE Rail & Heavy Duty Applications

� Interlocking systems control

�Signaling

�Ground stations

�Automatic Train Operations

�Train Control Systems

�Heavy Duty Land systems
(tanks, tractors…)

i

TCVR"/ Rctku"Uwdyc{"*Ogvgqt"nkpg+"

Cpucnfq / GWTQUVCT

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200634

Typical SCADE Nuclear I&C Applications

� Reactor Protection Systems:
� Reactor limitation system

� Trip processing

� Emergency shutdown 

� Reactor trip breakers

� Nuclear Instrumentation Systems:
� Power measurement system

� Sensor controllers

� Pressurizer heating controllers 

� Rod position instrumentation systems

� Other Safety Systems
� Safety valve control system

� Control rod control systems 

i

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200635

SCADE Successes: a few Facts & Figures

�Improved Productivity 
from 20 to 300 
SLOC/day

�80,000 SLOC Auto Generated
Subway 
Signaling 
System

ANSALDO

�60% Reduction in 
Development Cycle Time

�5X Reduction in Errors

�50% SLOC Auto Generated
Electrical 

Management 
System

PSA

�50% Reduction in 
Development Cycle Time

�90% Automatic PilotEC 155/135EUROCOPTER

�8X Reduction in Errors 
while Complexity 
Increased 4X

�200,000 SLOC Auto Generated 
from 1,200 Design Views

Nuclear Power 
Plant Safety 
Control

SCHNEIDER 
ELECTRIC

�20X Reduction in Errors

�Reduced Time to Market

Benefits Claimed

�70% Fly-by-wire Controls

�70% Automatic Flight Controls

�50% Display Computer

�40%Warning & Maintenance 
Computer

A340/500-600AIRBUS

Specified & Auto codedProductCompany

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200636

US101

ECU (Augusta Westland)

A Few of the Current Projects Embedding SCADE

Shenzhou VII

VEGA rocket
(European Space Agency)

Boeing 787

ECU (Intertechnique)

A400M

Cockpit Display System (Thales Avionics)
Fuel Management System (Airbus, Intertechnique)
Doors & High Lift controllers (Saab Aerosystems)
Steering, Landing, Kneeling, Braking Systems (Messier-Bugatti)
Engine & Propeller Control Units (Diehl Avionik Systeme GmbH)
Electrical System Function & Oxygen System Control Unit (Intertechnique)

Russian Regional Jet

Cockpit Display System
& Flight Warning System (Sukhoï)

ARJ21

Landing Gear (ABSC)

PW210

FADEC (Pratt & Whitney)

A380

Electric Load Management Unit (Intertechnique)
Braking System, Fuel Management System & FADEC (Airbus)

Cockpit Display System, Electrical generation & FCU (Thales Avionics)
Control & Display System 

& Doors & Slides Management System (Diehl Avionik Systeme)
Braking & Steering Control Unit 

& Electrical Thrust Reverser Actuation Control (Messier-Bugatti)
…

Cessna Citation Encore

Engine (Pratt & Whitney Canada)



7

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200637

Current SCADE Community

Civilian Avionics
� Aircraft Braking Systems

� Airbus

� CADI

� CLETRI

� Dassault Aviation 

� Diehl Avionik Systeme

� Elbit Systems

� Eurocopter

� FACRI

� GosNIIAS

� Honeywell CRL

� Intertechnique

� Liebherr-Aerospace

� Messier-Bugatti

� Pratt & Whitney 

� Rockwell Collins

� Saab Avitronics

� Snecma 

� Sukhoi

� Thales Avionics

� Turbomeca

� Silver Arrow

� Smiths Aerospace

Energy
� AREVA

� DS&S, owned by Rolls-Royce
� Framatome ANP

� NPIC

Defense & Space
� BAE SYSTEMS 

� CALT

� Dassault Aviation

� EADS Military

� EADS Space Transport

� EADS SD&E

� Elbit Systems

� ELV 

� ESA

� Eurocopter 

� Flight Dynamics 

� Goodrich 

� Hispano-Suiza 

� Lockheed Martin

� MBDA

� NASA

� Sagem

� SAST

� Thales Airborne Systems

� United Arab Emirates Air 

Force 

� US Air Force

Automotive
� Audi

� Daimler Chrysler

� Denso

� FTE

� General Motors

� Johnson Controls

� Nissan

� Renault

� PSA Peugeot Citroën

� Toyota

Transportation
� Alstom Transportation

� Ansaldo Signal

� Qinetiq

� …

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200638

Recent SCADE “Demos”

April 27th, 2005 - The first Airbus A380 to take 
to the air landed at Blagnac international 
airport, at 14.23 local time, after successfully 
completing a first flight that lasted three hours 
and 54 minutes.

A380 maiden flight – April 27th, 2005

April 23rd, 2005 - Cessna Aircraft Company 
celebrated the first flight of the Citation Mustang, 
its newest entry-level business jet, an American 
aircraft equipped with an engine controlled by 
100% SCADE generated code.

Citation Mustang maiden flight – April 23rd, 2005

F7X maiden flight – May 5th, 2005

May 5th, 2005 - The new Falcon 7X business jet 
from Dassault Aviation made its first test flight, 
from Bordeaux-Merignac. Its Flight Control and 
its Braking Systems have SCADE & KCG inside. 

Jakob Gärtner - Esterel Technologies – IEE Safety Critical applications from Aerospace to Automotive 200639



3

3333 © 2005 Esterel Technologies

Last Modification Date

Approbation List

SCADE 5.0 Course M1_C1.pptFile name

SCADE Course 5.0 Module M1 Course 1Summary

Sabine Sabathier, Bernard Dion, Amar BoualiAuthors

Knowledge ManagementDocument Repository

SCADE Course

Document Version

Jan. 2005Document Date

Document Reference

Document Title

4444 © 2005 Esterel Technologies

• Declarative language

– Typed & Structured 

– Hierarchical

– Deterministic semantics 

• Provides safe execution

– No inner loop, no dynamic allocation

– Maximum time of computation can be 
calculated

• Based on LUSTRE (textual synchronous 
data-flow language)

– Developed at Verimag: www-verimag.imag.fr

SCADE Language Properties

5555 © 2005 Esterel Technologies

Nodes

• Block diagram nodes

– Boxes with an I/O interface defining new 
operators for reuse and hierarchy

– Inner body can be either graphical or textual

• State machine nodes

– Flat State Machines

– Safe State Machines (SSM)

• Imported nodes (C or Ada functions)

– Nodes defined in C or Ada code extending the 
language expressivity

6666 © 2005 Esterel Technologies

• Graphical SCADE representation

– A node is a block diagram

The node is seen as a black box and is connected

through its formal I/O interface.

• Textual SCADE representation
node Counter1(init,incr: int; reset: bool)
returns (count: int ) ;

node Counter2(init,incr: int; hidden reset: bool) 
returns (count: int ) ;

Block Diagrams (1/2)

7777 © 2005 Esterel Technologies

• A block diagram example

• Textual SCADE representation

count = init -> if reset then init
else pre (count) + incr;

Block Diagrams (2/2)

8888 © 2005 Esterel Technologies

• Nodes graphical definitions are automatically 

translated into textual SCADE

• Also possible to define nodes textually

• Both graphical and textual SCADE are case 

sensitive

Textual Nodes



4

9999 © 2005 Esterel Technologies

Flat State Machines

• A single initial state

• Transition labels = 

Textual SCADE 

Boolean predicates

• Transitions have 

priorities to ensure 

determinism

• For each state, an 

output with same name 

is created

:::: © 2005 Esterel Technologies

SSM Overview

• Graphical Elements:

– Simple states as ovals or 
rectangles, transitions as 
arrows, macro-states as 
rectangle boxes

• Textual Elements:

– Input, outputs, and state 
names

– Trigger expressions for 
transition firing condition

– Actions expressions related 
to transitions firing and state 
activities

;;;; © 2005 Esterel Technologies

SSM Features

Set output O as soon as input A and 

input B have been received. Reset 

the whole behavior when input R is 

received.

Concurrency

A and B are independent

Sequencing

O follows AB

Hierarchy

Macro-states

Preemption

R resets the entire behavior

32323232 © 2005 Esterel Technologies

• The aim of an imported 

node is to describe 

processing for which 

SCADE language is not 

suitable

– The node name and the 

interface is defined in 

SCADE, but not the body

– The implementation will be 

provided into the target 

language

Imported Nodes

/**************************************/
/* My ADD function                    */
/**************************************/
#include "scade_types.h"
void ImpADD (int A, int B, int *Sum)
{

*Sum = A + B;

}

33333333 © 2005 Esterel Technologies

• The if-then-else operator

– Expresses a decision 

– Because of the data-flow semantics, both “then” and 

“else” expressions are always evaluated independently 

of the condition value.

– Example 

• Count1 and Count2 are 2 counters

• S = if c then count1() else count2();

�Each counter will be incremented

at each execution cycle regardless

of the Boolean flow c

�Note that this semantic suits well

with the usual intuition when

reading the equivalent graphical flow 

Some Choice Operators (1/2)

34343434 © 2005 Esterel Technologies

• The case operator
– It ‘s a switch

– 2N+1 inputs and 1 output 

• N inputs ei, each corresponding to a possible value for the output

• N inputs, each associated with a possible effective input ei and a 

“default” value

• 1 input : a switch whose value is compared with each label

– All the inputs are computed before the choice

– Example 
S = case es of

3 : (e1)

-2 : (e2)

C2 : (e2)

default : (e3);

����if es=3 then S=e1 else if es=-2 or C2 then S=e2 

else for all others S=e3

Some Choice Operators (2/2)



5

35353535 © 2005 Esterel Technologies

• The -> initialization operator

– Allows expressions to be initialised 

– During the first cycle, the previous value is indefinite 

– Example: 

Some Temporal Operators (1/3)

e4e3e2e1E

f4f3f2e1E->F

f4f3f2f1F

36363636 © 2005 Esterel Technologies

• The  pre delay operator

– Allows a trace of the value of an expression to be 

kept from one cycle to another 

– During the first cycle, the previous value is indefinite 

– Example: 

Some Temporal Operators (2/3)

e2e1nilY1Y1->pre(pre(E))

a3+b3a2+b2a1+b11010->pre(a+b)

e3e2e111->pre(E)

e3e2e1nilpre(E)

e4e3e2e1E

37373737 © 2005 Esterel Technologies

• The fby delay operator

– Allows a trace of the value of an expression to be 
kept over several cycles  

– Introduces a delay

– The number of cycles must be a strictly positive 
integer value 

– Example

– fby(E,n,Init) is equivalent to :

Init -> pre(Init -> pre(...-> pre(E)))

Some Temporal Operators (3/3)

e2

e4

e3e1InitInitfby(E,2,Init)

e5e3e2e1E

38383838 © 2005 Esterel Technologies

Clock Principles

• Clocks allow sub-systems to run at 

different rates

• The availability of a flow is defined by its 

clock. It is the rate at which it is sampled

• An operator is executed when all its inputs 

are available. This defines the clock of an 

operator

• Clocks are supported by the WHEN, 
CURRENT and CONDACT

39393939 © 2005 Esterel Technologies

• WHEN samples variables 
on slower rate.

• CURRENT projects variables 
on faster rate.

• Let ‘s assume that :
X = ( x1, x2, x3, x4, x5, x6, x7…)

The X flow is defined for each cycle. It is on the 
basic clock of the operator in which it is used.

C = (T, F, T, T, F, F , T,…)

WHEN & CURRENT (1/4)

3:3:3:3: © 2005 Esterel Technologies

t1      t2     t3      t4      t5     t6      t7          t

X           x1     x2     x3     x4     x5    x6     x7

Clock C             T      F T       T       F      F T  

Y=X when C           x1               x3     x4                 x7

Z=current(Y)           x1 x1 x3     x4 x4    x4 x7

• The Y flow is defined only when C is true

• The Z is defined on the basic clock of the operator

in which it is used

WHEN & CURRENT (2/4)



6

3;3;3;3; © 2005 Esterel Technologies

t1      t2     t3      t4      t5     t6      t7          t

X           x1     x2     x3     x4     x5    x6     x7

Clock C             F      F T       T       F      F T  

Y=X when C                             x3     x4                x7

Z=current(Y) nil       nil x3    x4 x4    x4 x7

What would happen if C was false at the first tick ?

• Nil means that the value is indefinite at this cycle

WHEN & CURRENT (3/4)

42424242 © 2005 Esterel Technologies

• Filtering the inputs

• Filtering the outputs

WHEN & CURRENT (4/4)

43434343 © 2005 Esterel Technologies

A “CONDACT” takes place 
for both WHEN and 
CURRENT

It issues the output 
initialisation value used at 

the first clock cycle

Using CONDACT (1/4)

Corresponding 
implementation using 

WHEN and CURRENT :

44444444 © 2005 Esterel Technologies

t1       t2        t3         t4        t5        t6      t7     t

X             x1     x2       x3        x4       x5       x6 x7

Clock C         T        F T         T         F         F T  

Y1= Y1 Y3=       Y4= Y4 Y4 Y7=

Op(x1) Op(x3)  Op(x4) Op(x7)

Y=condact

(Op(X),C, 

Y1init)

Using CONDACT (2/4)

45454545 © 2005 Esterel Technologies

What would happen if C was false at the first tick ?

t1       t2        t3         t4        t5        t6      t7     t

X             x1     x2       x3        x4       x5       x6 x7

Clock C         F        F T         T         F         F T  

Y1init Y1init Y3=      Y4= Y4 Y4 Y7=

Op(x3)  Op(x4) Op(x7)

Y=condact

(Op(X),C, 

Y1init)

Using CONDACT (3/4)

46464646 © 2005 Esterel Technologies

Right-click on the node and select Operator to Condact

Using CONDACT (4/4)



7

47474747 © 2005 Esterel Technologies

Exercise

48484848 © 2005 Esterel Technologies

• Textual representation
node RisingEdge (c: bool) returns (edge: bool);

let

edge = c →→→→ c and not pre(c);

tel;

• Graphical representation

M1-C1 Exercise 1

Fghkpg"vjg"vgzvwcn"cpf"vjg"itcrjkecn"tgrtgugpvcvkqpu"
qh"vjg"FallingEdge pqfg"yjkej"fgvgevu"c"vtwg/hcnug"
ugswgpeg0

49494949 © 2005 Esterel Technologies

M1-C1: SCADE Designing

• SCADE Requirements and Design 

Approach

–High-Level Requirements

– Preliminary Design

– Design

4:4:4:4: © 2005 Esterel Technologies

High and Low-Level Requirements

4;4;4;4; © 2005 Esterel Technologies

High-Level Requirements

• SCADE can be used to describe part of the High Level 

Requirements

• The SCADE model is part of the software requirements 

document, which contains also text

• At this stage, the SCADE model is incomplete and 

serves to identify:

– High level functions and data flows

– Root subsystem interface

– Main states

52525252 © 2005 Esterel Technologies

High-Level Requirements

Example top-level functions and interfaces

Sensors

PilotCommands

Sensors

ControlLaws

StatusLightsButtons

Elevator_cmd

ControlLogic

Throttle_cmd



8

53535353 © 2005 Esterel Technologies

Do a functional decomposition of the 

application
1. Identify the inputs/outputs of the system

2. Identify main functions and states

3. Describe the relations between the functions

• Decomposition in sub-systems

• Decomposition of data

• Definition of the network view

• Distribute sub-systems to team members for large 

projects

High-Level Requirements

54545454 © 2005 Esterel Technologies

• Using blocks diagrams and state transitions 

diagram in SCADE:

– Only hierarchy and data-flows are specified.

– The low-level components remain empty or are 

described in natural language (annotations).

Example: a low-pass filter is not described at this 

level.

– The input/output functions are not described.

– The types of the data are not completely defined.

High-Level Requirements

55555555 © 2005 Esterel Technologies

Preliminary Design

Identify what will be developped in SCADE 

and what will be developped manuallay

56565656 © 2005 Esterel Technologies

• Refinement process: divide and conquer

– Decompose according to
• identified functionalities

• data

• temporal aspects

– And also keep in mind development quality 
criteria
• reusability (targeted on the library operators)

• readability of the description (documentation)

• testability 

• parallel development 

• etc.

Software Design

57575757 © 2005 Esterel Technologies

• Applications usually contain
– an event-driven part

– a data-driven part

• Usually the event driven part pilots the data 
driven one. Some functions of the event-driven 
part are data-driven sub-systems

• Inside SCADE, Flat Sate Machines or SSMs can 
be used to describe the event-driven parts

Divide and Conquer

58585858 © 2005 Esterel Technologies

SCADE SSM used to describe 

complex event driven part

Divide and Conquer



9

59595959 © 2005 Esterel Technologies

• Develop the algorithms of the basic components:
– with data-flow description (using SCADE)

– in a sequential way (using imported operators)

• Select and use libraries
– Improve consistency and quality

• Reiterate at sub-systems level
Stop when reaching basic operators, library nodes or 
imported nodes.

Complete the Design

5:5:5:5: © 2005 Esterel Technologies

Software Coding

• Develop the code of the input/output 
functions

• Develop the code of the components which 
are not described in SCADE

• Generate the code of the whole SCADE 
model according to the compiling mode 
chosen during the software design

5;5;5;5; © 2005 Esterel Technologies

State Machines for State-based Logic

• Boxes are states

• Arcs are transitions

• States and transition have labels to attach 
names and behavior

• Commonly used for modeling control flow
and decision logic with intuitive meaning

62626262 © 2005 Esterel Technologies

Domains of Application

• Groups of displays
�Hierarchy for the
organization

Airplane Cockpit Display management

• States machines for managing the configurations 

and the interactions with pilots

• Several displays
�Parallelism for the
concurrent behaviors

• There are alarms
�Preemption to display them in priority

Source: www.nasa.gov

63636363 © 2005 Esterel Technologies

Domains of Application

• Seat Memory
– State machines to memorize the seat 
position preferences and their settings

� Hierarchy for the preferences

• Cruise Control
– State machines to decide the 
functioning modes according to the 
speed, user requests, events, etc.

� Preemption for exceptional cases

• Multimedia Infotainement Systems
– States machines to handle the 
modes, displays, user interface

� Hierarchy, parallelism, preemption

Car Control and Comfort

64646464 © 2005 Esterel Technologies

Domains of Application

• State machines for controlling the 
communication aspects of a protocol

– Data read and
data write with buses

– Encoding / Decoding
logic

– Bus access arbitration

– Examples: ARINC, CAN, TTP.

� Parallelism, hierarchy, preemption (reset)

Communication Protocols

Source: www.condoreng.com



:

65656565 © 2005 Esterel Technologies

Summary of the Need

• State Machines for modeling and designing the 

control logic aspects of applications with the 

following fundamental modeling means:

– Parallelism modeling for capturing the concurrent 

behaviors

– Hierarchy for design architecture

– Preemption for handling exceptions

• Smooth and consistent mix with data-flow design

� SCADE Safe State Machine is the solution!

66666666 © 2005 Esterel Technologies

Software development process

System development process

System informal

specification

System Prototyping

SCADE Editor

SCADE Editor

SCADE Code

Generator

Software

Integration

process

High-Level Requirements

& Architecture

Low-Level Requirements

& Architecture

Source Code

System Requirements

allocated to Software Software Requirements

process

Software coding process

Software design process

SSM Editor

SSM Editor

SCADE Software

Development

67676767 © 2005 Esterel Technologies

SSM in SCADE

• Capture the state-based logic of an 

application

• State machine based graphical 

formalism with parallelism and hierarchy

• Cycle-based computing model

• Tightly coupled with the SCADE data-

flow language

• Formal semantics with deterministic 

computation model

68686868 © 2005 Esterel Technologies

SSM Overview

• Graphical Elements:

– Simple states as ovals or 
rectangles, transitions as 
arrows, macro-states as 
rectangle boxes

• Textual Elements:

– Input, outputs, and state 
names

– Trigger expressions for 
transition firing condition

– Actions expressions related 
to transitions firing and state 
activities

69696969 © 2005 Esterel Technologies

SSM Node Naming

• The node name can be propagated on 

the file name on demand

Open Tools � Options � General tab

Select to have a 

dialog box entry to 

edir the SSM node 

name

Select to propagate 

the SSM node 

name to the 

underlying file name

6:6:6:6: © 2005 Esterel Technologies

SSM Node Characteristics

• Share the SCADE predefined types

• Share all the user constants

• Share the imported type declarations

• Share all the functions related to the imported 

nodes C functions with one output

floatreal

integerint

booleanbool

SSMSCADE



;

6;6;6;6; © 2005 Esterel Technologies

SSM Editor Overview

SSM edition 

area

SSM editor 

output

SSM 

workspace 

objects

Toolbars 

and menus

72727272 © 2005 Esterel Technologies

The SSM Inputs and Outputs

73737373 © 2005 Esterel Technologies

SSM Inputs and Outputs

• SSM I/O signals are declared 

at the SCADE SSM node 

level

• 3 kinds of signals:

– Pure (bool)

– Valued (tuple [bool,type])

– Value-only (type)

74747474 © 2005 Esterel Technologies

SSM Inputs and Outputs

Pure Signals

• Carry a Boolean presence status: 

true when present false when 

absent

• At each cycle, absent by default 

and present if there is some 

emitter in the cycle

• Predefined signal tick, as the 

SSM global clock, always 

present

• Inputs are set by the environment

75757575 © 2005 Esterel Technologies

SSM Inputs and Outputs

Valued Signals

• Equivalent to SCADE flows of 
type

[bool,type]
where bool is the presence 
status; type can be: bool, int, 
real, or any SCADE type

• Library libssm provides 
shortcuts type_signal where 
type can be bool, int, or real

• Outputs must be provided with 
an initial value

76767676 © 2005 Esterel Technologies

SSM Inputs and Outputs

Value-only Signals

• Equivalent to SCADE flows of 
same type

• Possible types: bool, int, 
real, and all user-defined 
SCADE types

• Assigned a new value from a 
single emission in a cycle 
otherwise, keeps the value of 
previous cycle

• Outputs must be provided with 
an initial value



32

77777777 © 2005 Esterel Technologies

Which Signal Kind?

Same as value-only and having 

additionally a status to characterize the 

cycles where it makes sense to analyze 

the value

Valued

To model a data-value whose value is 

likely to be coming from the environment 

or from a continuous internal computation

Value-only

To model a logical event whose lifetime 

and consideration is only meaningful in a 

cycle of execution: alarm, threshold 

detection

Pure

78787878 © 2005 Esterel Technologies

The SSM States

79797979 © 2005 Esterel Technologies

SSM States (1/3)

• Simple State

– Graphical oval or rectangle that can be named

– Basic memory element of a SSM

– At each cycle, is either active or not active

To draw the simple states as rectangles, edit the text file 

estudio_ssm.cfg in your application data settings and set 

RECT_SIMPLE_STATES  = 1.

i

7:7:7:7: © 2005 Esterel Technologies

SSM States (2/3)

• Macro-state

– Graphical box that can be named

– SSM container

– At each cycle, it is either active or not active

– When active, at least one state of the sub-
SSM it contains is active

7;7;7;7; © 2005 Esterel Technologies

Creating a State

1. Select the 

state or macro-

state creation 

button

2. Drag and drop 

the selection in 

the edition area

82828282 © 2005 Esterel Technologies

State Basic Attributes

Name: a SCADE identifier, 

e.g. AlarmON, FlightMode, 

Temperature

Mark as initial or final



33

83838383 © 2005 Esterel Technologies

Initial State

• Graphically depicted as
a bold circle for simple states 
and a bold box for macro-states

• The initial states is active 
whenever the SSM is started or 
the macro-state it is in is 
activated

• Right-click on the state and 
select Toggle initial to set it as 
initial

84848484 © 2005 Esterel Technologies

Final States

• Also called terminal, graphically 

denoted as a doubled circle

• Only simple states can be final

• When reached, means that the 

SSM activity terminates (treated 

later)

• Right-click on the state and 

select Toggle final to set it as 

final

85858585 © 2005 Esterel Technologies

Other State Properties

• State look-and-feel is 

customizable

– Font of state label

– Line style

– Colors

– Comments

86868686 © 2005 Esterel Technologies

Local Signals

Defined in the scope of a 

macro-states as a comma 

separated list of signal 

declarations.

Can be read or produced 

at any part of the contents 

of the macro-state

Right-click in the macro-

state area and select 

Properties.

Local signals can be pure, 

valued, or value-only, 

possibly initialized

87878787 © 2005 Esterel Technologies

The SSM Transitions

88888888 © 2005 Esterel Technologies

SSM Transitions

• Have one source state, and one target state

• If source state is active, preempts the activity 

of source state starting the activity of target 

state

• A transition can be fired the next cycle after 

the cycle their source has started activity.



34

89898989 © 2005 Esterel Technologies

Creating a Transition

1. Select the transition 

creation button.

2. Click in the source 

state and drag to the 

target state. Release 

button when 

highlighting the target 

state.

8:8:8:8: © 2005 Esterel Technologies

Other Transition Properties

• Transition look-and-feel 
can be customized:

– Font for labels

– Line style

– Comments 

8;8;8;8; © 2005 Esterel Technologies

Transition Trigger

Fire transition upon the presence of a signal.

• If Signal ON is present (true), and if State 

OFF is active, then preempts State OFF and 

activates State ON.

• Signal ON can be an input from the SSM 

context, an output produced by the SSM, or 

an emitted local signal.

92929292 © 2005 Esterel Technologies

Transition Trigger

Enter transition 

trigger as a Boolean 

expression of signal 

presence statuses:

(A and not(B))

(C or D).

Right-click on 

transition and open 

Properties.

Click on Apply or 

OK to validate.

Transition priority.

93939393 © 2005 Esterel Technologies

Transition Priorities

• Priorities are automatically set 
by the Editor as soon as a 
state has two or more outgoing 
transitions

• To ensure determinism, when 
two transitions have a true 
triggering condition, only the 
one with highest priority is 
fired.

• Implicit negation of all triggers 
from highest transition

Q: What if transition of 

priority <2> is fired?

94949494 © 2005 Esterel Technologies

Transition Effect

Perform an action while firing a transition

• If Signal ON is present (true), and if State 

OFF is active, then preempts State OFF and 

activates State ON.

• Perform an action: emits the signal SET_ON.

• Signal SET_ON is an output produced by the 

SSM.



35

95959595 © 2005 Esterel Technologies

Transition Effect

Trigger: has to be 

true to fire the 

transition.

Effect: list of signal 

to emit while firing 

the transition.

96969696 © 2005 Esterel Technologies

Signal Emission

• Emitted signals are broadcast to the whole 

SSM the signal is defined in.

• In a given cycle, if a signal is emitted then:

– It is present in that cycle (pure and valued signals).

– For value-only and valued, the new value is 

accessible for any reader in that cycle.

– It is guaranteed that any reader is always 

scheduled after any updated.

97979797 © 2005 Esterel Technologies

Valued Signals Syntax

• To read the value of a valued or value only signal S, 
write ?S

{ ?Pressure > 10.0f }

• To emit a valued signal S with value val, write 

S(val), where can be:

– A constant value: Alarm(false), Level(LOW), 
Speed(90), Angle(0.5f)

– The value of another signal: MaxSpeed(?Speed)

– The return value of a function call:
Speed(Max(?X,?Y)), Alarm(ValveOpen())

– The result of an arithetic expression over values:
MaxSpeed(?Speed + Max(?X,?Y) + 1)

98989898 © 2005 Esterel Technologies

The pre Operator

• Access the previous status or value of a 
signal

• For any signal S, pre(S) is the value of 
the status at the previous cycle

• For a valued or value-only signal V, 
pre(?V) is the value of the data carried 
by V at the previous cycle

• The pre operator cannot be applied on 
itself

99999999 © 2005 Esterel Technologies

Transition Labeling (1/3)

Count Event condition { Data condition } / Effect

Trigger

Trigger:

Data condition

Trigger:

Event condition

Effect: signal 

emissions

9:9:9:9: © 2005 Esterel Technologies

Transition Labeling (2/3)

• Trigger: Conjunction (AND) of two conditions
– Event condition: A formula of signal statuses, 
e.g.: A and not(B)

– Data condition: A formula of data conditions surrounded 
by “{ }”, e.g. { ?Level >= 10 and (Max(?A,?B) < ?C) }

• An optional counter Count: number of times the 
entire trigger has to be true

5 times tick

3 times CLICK {?KEY = SHIFT}

Count Event condition { Data condition } / Effect

Trigger



36

9;9;9;9; © 2005 Esterel Technologies

Transition Labeling (3/3)

• Effect: List of signal emissions:
Sum(pre(?Sum)+1), AlarmOn, StopEngine

Count Event condition { Data condition } / Effect

Trigger

:2:2:2:2 © 2005 Esterel Technologies

Transition and Initial States

• At the initial cycle, the initial state’s transitions 

are immediately fire-able.

• At the other cycles, the initial state behaves 

like any other state.

• Exercise: explain the difference between the 2 

SSM below:

:3:3:3:3 © 2005 Esterel Technologies

Transition and Terminal States

• A final state cannot have 
outgoing transitions: it is a 
transient state, not a state 
memory element where time 
can elapse.

• When a triggered transition 
reaches a final state, the 
SSM or macro-state it 
belongs to ends its 
execution

:4:4:4:4 © 2005 Esterel Technologies

Transition: Summary

• At most one transition is fired in a cycle

• A transition can be fired if its trigger condition is 
true and:
– If its source was active at the previous cycle, or

– At the initial cycle if its source state is the initial state.

• Label of the form:
Count Event condition { Data condition } / Effect

where:
– Count: occurrence count for the event condition

– Event condition: Boolean expression testing signal 
presence statuses.

– Data condition: Boolean expression testing values of 
signals and functions

– Effect: list of signal emissions.

:5:5:5:5 © 2005 Esterel Technologies

The SSM State Behavior

• Macro-states

• Actions in states

:6:6:6:6 © 2005 Esterel Technologies

Macro-states

• State containing a sub-SSM

– When activated, activates immediately the SSM is contains

• Hierarchy construct

– To increase the readability and maintainability

– To comply with software functional architecture constraints



37

:7:7:7:7 © 2005 Esterel Technologies

Action Attributes

OnInside: Action list to 

execute when inside the state

OnEntry: Action list to execute 

when entering the state.

Actions can be performed upon the activity status of a state

and are expressed the same way as transition effects

An initial state active at the first 

cycle behaves as if it is entered :

- OnEntry actions are executed,

- OnInside actions are not executed. 

i

:8:8:8:8 © 2005 Esterel Technologies

Example: Sustaining a Signal (1/2)

Emit a signal whenever a state is active

• Solution 1: create a transition that emits the 

signal as long as the state is active

:9:9:9:9 © 2005 Esterel Technologies

Example: Sustaining a Signal (2/2)

Emit a signal whenever a state is active

• Solution 2: create an OnInside action to the 

state

To execute the 

action also when 

entering the state

:::::::: © 2005 Esterel Technologies

Example


