Safety- Critical Systems
Methodology and Application

STRESS 2006

Summer School on Tool- Based Rigorous Software Engineering

Dortmund, May 19, 2006

1 b Garar - Etr! Tochologes - IEE Safe Crcl alcators o erosgae 0 Ao 2008 i

= EE BEE pp

Montreal, QC
Paris, Sophia Antipolis,

ouse Munich

Mountain View, CA Bracknell

3 Jakob Gariner - Esterel Technologies — EE Saf Aerospace to Automotive 2006

f.:m P
o

R e

Eam

T
R

sacr | men

e [ RS

Control engineers
describe and analyse
systems in terms of block
diagrams and z-transfer

Software engineers
describe software in

functions terms of tasks, flowcharts
and memory
5 Jakob Gartner - Esterel Technologies — IEE Safely Critical applications from Aerospace o Automotive 2006

» Esterel Technologies is a Software Editor
» We provide development tools and expertise services
+ Safety-Critical embedded software (SCADE Suite™, SCADE Drive ™)
« Critical Electronic Components (Esterel Studio™)
» Our Customers are OEMs, Tier1s and Tier2s suppliers
+ Aerospace & Defense
+ Automotive
« Transportation
+ Semiconductors & Electronics
» Our Uniqueness

+ Software design tools and expertise services covering our customers’ design
processes from specification to implementation

+ Unique formal methods and technologies enabling automated & certified
implementation while meeting stringent safety requirements

» Process driven
» DO-178B is mandatory
» DO-178B defines the objectives of the process, not its
means

» Process is strictly requirements driven

» Each project is to be certified by public authorities (EASA,
FAA...)

Jalkob Gariner - Esterel Technologies — IEE Safety m Aerospace fo Automotive 2006

v

Creation of formal synchronous data flow
language:
» Data flow language ‘Lustre’, designed at IMAG
(Grenoble, 1985)
» Control flow language ‘Esterel’ at Ecole des Mines,
Sophia Antipolis
Industries developing safety critical software
» Aerospatiale created ‘SAQ’ for Airbus
» Merlin-Gerin created 'SAGA’ for nuclear power plant
control
SCADE product created in partnership with
industry (Aerospatiale, Merlin-Gerin) (1995)

v

v

Jalkob Gartnor - Esterel Tochnologios — IEE Safety Criscal applications from Agrospace 1 Automoiive 2008




Block diagram

Mathematical Z
operator

SCADE Formal Data Flow

SCADE pre
operator

y= az™'x

SCADE maps
control
engineering
constructs to
rigorous software
constructs.

Jalob Gartnor - Esterel Tochnologios — IEE Safety Criscal applications from Agrospace 1 Automoiive 2008

» y=a*pre(x)

Simple notation
familiar to both
system and SW

teams.

» See technical SCADE introduction

Jakob Gariner - Esterel Technologies — EE Saf

Aerospace to Automotive 2006 -

» Unique model-based development environment that
reconciles productivity and safety.

» Familiar graphical notation with block diagrams & state
machines, rigorously defined and fully deterministic.

» Designed from the beginning for the development of DO-
178B projects up to level A. SCADE is also certified to IEC
61508.

» SCADE Suite Automatic Code Generator is used in
production for major recent DO-178B certification programs
ThedeWistato standard for the development of safety-
critical embedded software in the Avionics Industry.

Jalob Gartnor - Esterel Tochnologies — IEE Safety Ciscalapplications from Agrospace o Automoiive 2008

» Process driven
» DO-178B is mandatory

» DO-178B defines the objectives of the process, not its
means

» Process is strictly requirements driven

» Each project is to be certified by public authorities (EASA,
FAA...)

10 Jakob Garier - Estere Technologes — IEE Safety m Asrospace fo Auorotive 2006 <

System life-cycle processes (ARP 4754)

System safety assessment process

= .
P Y
System requirements - H
allocated to software R
- 28
Software level(s) Fault containment
boundaries
Design constraints Error sources
identified/eliminated
~— Hardware definition -—— Software requirements
b o & architecture
N <

Software life-cycle processes (DO-178B)

part of implementation processes, for ARP 4754

Jalob Gartnor - Esterel Tochnologios — IEE Safety Criscal applications from Agrospace 1 Automoiive 2008

Standards
Planning environment

process

Development
process

Verification Validation
criteria

Requirements,
design, code

Integral process Verification process
Configuration
Management

Certification Rt "
Liaison process Quality Assurance

Jalkob Gartnor - Esterel Tochnologios — IEE Safety Criscal applications from Agrospace 1 Automoiive 2008




System Develoment
Processes (ARP 4754)

Systern Requirements
e Allocated to Software
v

System
Requirements
Process

Change
requests SW Requirements Software Develoment
Process High-Level Processes (DO-1788)
 : Requirements
Change
requests SW Design
Process Low-Level Requirements
. & Architecture
Change .
requests SW Coding
Process Source and
.. Object Code
i v Integrated
Canse | SW Integration Crecutable
. Process

'

Jalob Gartnor - Esterel Tochnologios — IEE Safety Criscal applications from Agrospace 1 Automoiive 2008

Requirements

Integration
Analysis

Design Implementation & Testing

Validation

Documentation
& i Db

& Architecture Spec

& Algorithm Spec

& Generated Code

& Testing & Testing on target

Model Based Design Flow
» Build explicit architectures of predictable systems
» Go seamlessly from abstraction to realisation

» Capitalize on V&V activities early and all along the development flow

Aerospace 1o Autorolive 2005 P A

Jakob Gariner - Esterel Technologies — EE Saf

Software Development Project

T e ]

Software Design

System
Requirements Requirements.

» Now, let us imagine that all your tools, including
your compiler and your code generator, give you a
« certificate of correctness » (i.e. a guaranty that
they never introduce an error)

» Then, you are capable to perform testing at model

level ...and finally go directly and safely down to the
target!

Jalob Gartnor - Esterel Tochnologios — IEE Safety Criscal applications from Agrospace 1 Automoiive 2008

Requirements
Analysis

Integration

Design Implementation & Testing

Validation

Documentation

Documentation

& Code & Testing

& Testing on target

Traditional Design Flow
» Sequential flow, iteration is expensive

» Manual code development, paper intensive, error prone,
resistant to change

» Project gets complex to manage by the end of the Integration phas&”‘

Jalob Gartnor - Esterel Tochnologies — IEE Safety Ciscalapplications from Agrospace o Automoiive 2008

Software Development Project

= Object
T e o]

Software Design
Requirements

System
Requirements

» In the traditional design flow, testing activities start
only once the object code is downloadable and
executable on board

» It is recognized that it would be more efficient and
less costly to perform earlier testing

1 herospace o Atormive 2008 _ A

16 Jalkob Gariner - Esterel Technologies — IEE Safety

Software Development Project

153 04 = =]

Software Design
Requirements.

System
Requirements

» The guaranty of a
reliable encapsulation
of software components
on target is ensured by
AUTOSAR standard

infrastructure

woishs Buesodo

AUTOSAR RTE
e S
Basic Software

o T gt el . CANL...)

Jalkob Gartnor - Esterel Tochnologios — IEE Safety Criscal applications from Agrospace 1 Automoiive 2008




Software

m
Requirements Requirements.

» The source code generated by a « certified » code
generator uses only a small subset of the C language, with
a low level of complexity

» A test suite can be built from all the C constructs that can
ever be generated from the model, ensuring MC/DC
coverage at object code level

» The subset approach is accepted by safety authorities

Jalob Gartnor - Esterel Tochnologios — IEE Safety Criscal applications from Agrospace 1 Automoiive 2008

Software

Requirements Requirements.

» A Certified C Code Generator generates simple C code
that fits the constraints of safety-critical embedded software:
» Portable (compiler, target and OS independent)
» Structured (by function or by blocks)
» Readable, traceable (name/annotation propagation)
» Static memory allocation
» No pointer arithmetic
» No recursion, bounded loops only
» Bounded execution time
» Size or speed optimisation

Jakob Gariner - Esterel Technologies — EE Saf Aerospace to Automotive 2006 PP

== besign
Requirements

|am Y

R

T

» Functional verification has to demonstrate that the software
satisfies its requirements

» In a model-based approach, model simulation allows
requirements-based tests to be performed at the model
level for early detection of specification errors

» Concurently, Model Test Coverage analysis shall assess
how thoroughly a model has been explored by simulation

Jalob Gartnor - Esterel Tochnologios — IEE Safety Criscal applications from Agrospace 1 Automoiive 2008 P

Software

m
Requirements Requirements.

Test suite that

ensures a MC/DC <
of 100%

coverage

Jalob Gartnor - Esterel Tochnologies — IEE Safety Ciscalapplications from Agrospace o Automoiive 2008

Software

Requirements Requirements.

» A Certified C Code Generator has been designed from
the beginning with safety objectives: DO-178B, IEC 61508

» The expected benefits are:
» Remove the requirement to perform low level testing
» Enable cost effective functional verification at model level
» Reduce cycle time for requirements/model changes by 3X.
» Reduce time to market by 50%.

Jalkob Gariner - Esterel Technologies — IEE Safety m Aerospace fo Automotive 2006 PP

—>

7| Design

s

Requirements |~

|_am_|

» Model Test Coverage (MTC) may reveal
unintended functions, shortcomings in test
procedures, and inadequacies in requirements

» As soon as MTC gives evidence that all
elements of the model have been covered
with respect to the requirements, the
functional verification activity is done ...
down to the target!

Jalkob Gartnor - Esterel Tochnologios — IEE Safety Criscal applications from Agrospace 1 Automoiive 2008




Software Development Project

- E = =]

System Software Design
Requirements Requirements.

» Model. checmng is'co nuously allowed to preserve
| consistence of data types, clocks and sub clocks, data—"—
uepenuelw E,y(;lb‘ aetection, etc.

2 Jalob Gartnor - Esterel Tochnologios — IEE Safety Criscal applications from Agrospace 1 Automoiive 2008

|
I Gl €
Most complex and changing H Code

software part

/0 and Scheduling ‘

Operating|System/| Drivers

Hardware

27 Jakob Gariner - Esterel Technologies — EE Saf

: Secure Partition 1 Secure Partition 2 Secure Partition3  Secure Partition 4

Ada Program C Program EC++ Program C Program
Safety Level: A Safety Level: B Safety Level: D
(High) (Medium) (Low)
GMART
Ada run-time

NO EFFECT !
INTEGRITY-178B Kernel

Embedded Processor

2 Jalob Gartnor - Esterel Tochnologios — IEE Safety Criscal applications from Agrospace 1 Automoiive 2008

Process

Software Development Project

System Software Design
Requirements Requirements
Model Coverage Model Certified Compiler
Analysis Checking CodeGen Verification

v SCADE Editor: Design Consistency Checks
v SCADE Regs-Based Model Testing & MTC

v IEC 61508 Certified SCADE KCG = No Low-Level Verification
v Compiler Verification Kit (CVK comprehensive test suite) A

Jalob Gartnor - Esterel Tochnologies — IEE Safety Ciscalapplications from Agrospace o Automoiive 2008

SCADE’
® 9,
o SR Certified o B o
SoniAte Factory

=

Automatic D
G

‘ D0-178B Qualified
: IEC 61508 Certified *C

SCADE Solution

The Market Leader
in Aerospace & Defense
for the Development
of Safety- and Mission-Critical Software

30 Jalkob Gartnor - Esterel Tochnologios — IEE Safety Criscal applications from Agrospace 1 Automoiive 2008 s ; ﬁ



» Flight control systems
» Power management

» Reconfiguration management
» Autopilots

» Engine control systems

» Braking systems

» Cockpit display and alarm
management

» Fuel management

Jalob Gartnor - Esterel Tochnologios — IEE Safety Criscal applications from Agrospace 1 Automoiive 2008

» Interlocking systems control

» Signaling

» Ground stations

» Automatic Train Operations

» Train Control Systems

» Heavy Duty Land systems
(tanks, tractors...)

3 Jakob Gariner - Esterel Technologies — EE Saf Aerospace to Automotive 2006

Jalob Gartnor - Esterel Tochnologios — IEE Safety Criscal applications from Agrospace 1 Automoiive 2008

» Airbags
» Braking Systems, ABS & ESP

» Steering

» Chassis & Suspension Systems
» Driver Assistance Systems
» Restraining systems

» Engine regulation

» X-By-Wire applications

Jatob Gartner - Esterel Technologies

» Reactor Protection Systems:
» Reactor limitation system
» Trip processing
» Emergency shutdown
» Reactor trip breakers
» Nuclear Instrumentation Systems:
» Power measurement system
» Sensor controllers
» Pressurizer heating controllers
» Rod position instrumentation systems
» Other Safety Systems
» Safety valve control system
» Control rod control systems

Jalkob Gariner - Esterel Technologies — IEE Safety m Aerospace fo Automotive 2006

B Cockpit Display Systom (Thalos Avirics)
Fuel Management System (Arbus, Interiechniaue)
Doors & High Lift controllrs (Saab Aerosystoms)
Engine & Propeller Control Units (Dien Avionk Systere GoH)
Electrical System Function & Oxygen System Control Unit (ntertechvicue)

Electric Load Management Unit (erischrique)
Braking Systom, Fusl Managoment Systom & FADEC (Abus)

Control & Display System
& Doors & Siides Management System (Diefl Aviorik Systerme)
Braking & Steering Control Unit

& Electrical Thrust Reverser Actuation Control (Wessier-Bugalt)

Jatob Gartner - Esterel Technologies - IEE Safely Criscalappications from Aerospace to AuR




RecentSCADE=Pemos”—

May 5%, 2005 - The new Falcon 7X business jet

from Dassault Aviation made its first test flight,
from Bordeaux-Merignac. Its Flight Control and
its Braking Systems have SCADE & KCG inside.

F7X maiden fight - May 5", 2005

April 27t, 2005 - The first Airbus A380 to take
to the air landed at Blagnac international

- airport, at 14.23 local time, after successfully
completing a first flight that lasted three hours
and 54 minutes.

'A380 maidon fight - Apr 277, 2005

April 23, 2005 - Cessna Aircraft Company
celebrated the first flight of the Citation Mustang,
its newest entry-level business jet, an American
aircraft equipped with an engine controlled by
100% SCADE generated code.

Chatlon Mustang maiden figh ~ Aprl 237, 2005

Jalob Gartnor - Esterel Tochnologios — IEE Safety Criscal applications from Agrospace 1 Automoiive 2008 i 38 Jalob Gartnor - Esterel Tochnologies — IEE Safety Ciscalapplications from Agrospace o Automoiive 2008

[RIELL

39 Jakob Gariner - Esterel Technologies — EE Saf Aerospace to Automotive 2006 <




2

g )

©2005 Eserei Tecmongies ~ESZERES )

Nodes

* Block diagram nodes
— Boxes with an /O interface defining new
operators for reuse and hierarchy
— Inner body can be either graphical or textual
+ State machine nodes
— Flat State Machines
— Safe State Machines (SSM)
 Imported nodes (C or Ada functions)
— Nodes defined in C or Ada code extending the
language expressivity

©2005 Eserl Tochroiogies ~ E572864”}

SCADE Language Properties

» Declarative language
— Typed & Structured
— Hierarchical
— Deterministic semantics
 Provides safe execution
— No inner loop, no dynamic allocation
— Maximum time of computation can be
calculated

» Based on LUSTRE (textual synchronous
data-flow language)
— Developed at Verimag: www-verimag.imag. fr

©2005 Eserei Tecmongies ~ESZERES |

Block Diagrams (1/2)

» Graphical SCADE representation
— A node is a block diagram

= : R .
init .

> coumen [ > L coumerz [ >
inct count S g

[N | }T” resat o
reset

The node is seen as a black box and is connected
through its formal I/O interface.

» Textual SCADE representation
node Counterl(init,incr: int; reset: bool)
returns (count: int ) ;
node Counter2(init,incr: int; hidden reset: bool)
returns (count: int ) ;

©2005 Eserl Tochnoogies ~E572864”}

Block Diagrams (2/2)

* A block diagram example

init
resét
0 ? - >
— S coufit

PRE

» Textual SCADE representation

count = init -> if reset then init
else pre (count) + incr;

Textual Nodes

node GetHiddle(
Pt_B : point :

Pt_A : point)

returns (

niddle : point) :
let esqus =q GetMiddle[ , ]

niddle = Vec3ult(Vec3Sum(Pt_B , Pt_&) . 0.5) ;
tel

s% End of blocks of node GetMiddle =~

* Nodes graphical definitions are automatically
translated into textual SCADE

+ Also possible to define nodes textually
» Both graphical and textual SCADE are case
sensitive

©2005 Eserei Tecmongies ~ESZEAES |

©2005 Eserei Tecmongies ~ESZERES |




Flat State Machines

A single initial state —

Elevator
requested_floor

Transition labels =

Textual SCADE aaim ’ N w
. e

Boolean predicates

Init

Transitions have
priorities to ensure
determinism

s

2 e
requested_flocr selected floor
<flogy 2 flor
d b
causted floor =foor)  (reauested._flocr Sog
or alarm aralam n

2 2
requested_floor < floor selected floor = Tloor

* For each state, an
output with same name
is created

7 ©2005 Estre Tcrmologes 57886

SSM Overview

» Graphical Elements:

— Simple states as ovals or
rectangles, transitions as
arrows, macro-states as
rectangle boxes

« Textual Elements:

— Input, outputs, and state
names

— Trigger expressions for
transition firing condition

— Actions expressions related
to transitions firing and state
activities

8 P p——

SSM Features

Set output O as soon as input A and
FT - input B have been received. Reset
oy S the whole behavior when input R is
received.

Q — Hierarchy
)

Macro-states

T Concurrency
A and B are independent
T Sequencing
O follows AB
Preemption
R resets the entire behavior

9 ©2005 Estorel Technologies ~ ESTEAES |

Imported Nodes
* The aim of an imported

node is to describe [N e
processing for which RN | e B
SCADE language is not ? , .
suitable /’ N
7’ AY
// \\
— The node name and the , N
interface is defined in 7
SCADE, but not the body | /esreeesereecesan 2

#include "scade_types.h"

void ImpADD (int A, int B, int *Sum)

{

— The implementation will be |,
provided into the target

language

*Sum = A + B;

10 ©2005 Estorel Technologies ~ ESTEAES |

Some Choice Operators (1/2)

+ The if-then-else operator 1
— Expresses a decision
— Because of the data-flow semantics, both “then” and
“else” expressions are always evaluated independently
of the condition value.
— Example
+ Count1 and Count2 are 2 counters
«s = if ¢ then countl() else count2();
=>Each counter will be incremented

at each execution cycle regardless couat 5 e
of the Boolean flow ¢ I
=>Note that this semantic suits well

with the usual intuition when
reading the equivalent graphical flow

1 ©2005 Esere Tecmnoogies ~EZ88EL )

Some Choice Operators (2/2)
* The case operator
sase op £

— It's a switch
— 2N+1 inputs and 1 output
» N inputs ej, each corresponding to a possible value for the output

« Ninputs, each associated with a possible effective input ei and a
“default” value

« 1input: a switch whose value is compared with each label
All the inputs are computed before the choice

— Example [
S = case es of -
3 : (el) i
-2 : (e2) }L , N
c2 : (e2) = 2 .
default : (e3); o i

Dif es=3 then S=el else if es=-2 or C2 then S=e2
else for all others S=e3

12 ©2005 Esere Tecmnoogies ~EZE8EL )




Some Temporal Operators (1/3)
* The -> initialization operator
— Allows expressions to be initialised
— During the first cycle, the previous value is indefinite
— Example:
E el e2 e3 ed
F £1 £2 £3 £4
E->F ¢ el £2 £3 £4
13 ©2005 Estre Techologies ESTEAG

Some Temporal Operators (3/3)

+ The fby delay operator =

— Allows a trace of the value of an expression to be
kept over several cycles
— Introduces a delay

— The number of cycles must be a strictly positive
integer value

— Example
E el\ e2 (| e3\ e4 e5
Fav S
foy(E,2,Tnit) o T | tnit | nit o1 Trez Jres
nt
- fby (E,n,Init) is equivalentto:
Init -> pre(Init -> pre(...-> pre(E)))
15 ©2005 Esorl Tochnoogls  ESZEAEL’)

WHEN & CURRENT (1/4)

* WHEN samples variables =
on slower rate. fiy| — >

1

* CURRENT projects variables N
on faster rate. " o

* Let ‘s assume that :

X = ( x1, x2, x3, x4, x5, x6, x7.)
The X flow is defined for each cycle. It is on the
basic clock of the operator in which it is used.

c= (T, F, T, T, F, F, T,.)

17 ©2005 Estre Tcrmologes 57886

Some Temporal Operators (2/3)
* The pre delay operator
— Allows a trace of the value of an expression to be
kept from one cycle to another
— During the first cycle, the previous value is indefinite
— Example:
E el e2 e3 ed
pre (E) o nil el e2 e3
1->pre (E) XS M pared 1 el e2 e3
lo-spre(am) LTI | 10 | al4bl | a2+b2 | a3+b3
nispreprem) TEETFC | v1 | a1l | el e2
14 ©2005 Eserl Techroogies 576860}

Clock Principles

Clocks allow sub-systems to run at
different rates

The availability of a flow is defined by its
clock. It is the rate at which it is sampled

* An operator is executed when all its inputs
are available. This defines the clock of an
operator

* Clocks are supported by the WHEN,
CURRENT and CONDACT

©2005 Esorl Tochnoogls  ESZEAEL”)
WHEN & CURRENT (2/4)
Z=current(Y) xlI x1 x3 x4 x4 x4 x7
Y=X when C x1 x3 x4 x7
Clock C T F T T F F T
X xl x2 x3 x4 x5 x6 x7
tl 22 3 @ t5 t6 (7 t
* The Y flow is defined only when C is true
* The Z is defined on the basic clock of the operator
in which it is used
18 2005 EsrerTecmogies ~EZEAES )




WHEN & CURRENT (3/4)

What would happen if C was false at the first tick ?

Z=current(Y) nil  nil x3 x4 x4 x4 x7

oant

Corresponding
implementation using
WHEN and CURRENT :

Y=X when C x3 x4 x7
Clock C F F T T F F T
X xlI x2 x3 x4 x5 x6 X7
26 % 5 t
+ Nil means that the value is indefinite at this cycle
19 ©2005 Estre Techologies ESTEAG
Using CONDACT (1/4)
A “CONDACT” takes place >—>—‘
for both WHEN and
——_ :
CURRENT " >
. o« o
It issues the output i >
initialisation value used at @ ]
the first clock cycle o [

WHEN & CURRENT (4/4)

* Filtering the inputs

}7

.
- R 5
)L when — =
o

IEG X
}T>7 ® cuR o <
}T>—,7 o

20 ©2005 Esterel Technologies

Iy

21 ©2005 Estorel Technologies ~ ESTEAES |

Using CONDACT (2/4)

Y=condact| yi- y;  vi= ya= Y4 V4 V7=
(Op(X).C, | op(x1) Op(x3) Op(x4) Op(x7)
Y linit)

Clock C T F T T F F T

X xl  x2 x3 x4 x5 X6 x7

tl 2 3 t4 t5 t6 t7 ot

2 ©2005 Eserel Technologies:

Using CONDACT (3/4)

What would happen if C was false at the first tick ?

Y=condact
(Op(X) C Ylinit Ylinit Y3= Y4= Y4 Y4 Y7=
Ylinit)’ ’ Op(x3) Op(x4) Op(x7)
Clock C F F T T F F T
X xl x2 x3 x4 x5 x6 x7
tl 2 t3 t4 t5 t6 t7 t

23

©2005 Estrel Technologies  ESTEAES |

Eszeais’]

Using CONDACT (4/4)

% CRISESHS ) nsertErcatpain:
¥

Bcopy

RYoelee from o

Hesesuma
'Broperties..

Right-click on

24

=)

CruiseSpeedhigt | —

the node and select Operator to Condact

©2005 Esterel Techmologies

Iy




TRAINING

—
©2005 Eserei Tecmogies
25 i

TRAINING

9,

M1-C1 Exercise 1

» Textual representation
node RisingEdge (c: bool) returns (edge: bool);
let

edge = ¢ = c and not pre(c);
tel;

» Graphical representation

| B

Define the textual and the graphical representations
of the FallingEdge node which detects a true-false
sequence.

2 © 2005 el Tecmooges ERZEREL )
=

-

27 YT ——
sy

High-Level Requirements

» SCADE can be used to describe part of the High Level
Requirements

* The SCADE model is part of the software requirements
document, which contains also text

+ At this stage, the SCADE model is incomplete and
serves to identify:
— High level functions and data flows
— Root subsystem interface
— Main states

29 © 2005 el Tecmooges EZEREL
=

28 LT ——
sy

High and Low-Level Requirements

RSN
e el Jon)
i) | i | Y N
P NN
g O N N
signtevel  fulial o e Ry
HionLevel fusfbue) e N

Low-Level
Requirements

:] et pased

20 © 2005 el Tecmooges ERZEREL )
=

High-Level Requirements

>t >

Butions Statisughts

PlotCommands GontrolLogic ContolLaws

—>— e

Sensors

Example top-level functions and interfaces




31

High-Level Requirements

Do a functional decomposition of the
application

1. Identify the inputs/outputs of the system

2. Identify main functions and states

3. Describe the relations between the functions

+  Decomposition in sub-systems

Decomposition of data
Definition of the network view

Distribute sub-systems to team members for large
projects

©2005 Estrel Technologies  ESTEAES |

33

Preliminary Design

1
I
' !
Textual SCADE
Design Architecture
Design
' —_—
I v v v
: SCADE SCADE SCADE
Module A Module B Module X
: LLR LLR LLR
'
. '
v SCADE Glcbal Design

Identify what will be developped in SCADE
and what will be developped manuallay

High-Level Requirements

+ Using blocks diagrams and state transitions
diagram in SCADE:

— Only hierarchy and data-flows are specified.

— The low-level components remain empty or are
described in natural language (annotations).
Example: a low-pass filter is not described at this
level.

— The input/output functions are not described.

— The types of the data are not completely defined.

©2005 Estrel Technologies  ESTEAES |

©2005 Estorel Technologies ~ ESTEAES |

Software Design

» Refinement process: divide and conquer
— Decompose according to
« identified functionalities
+ data
« temporal aspects
— And also keep in mind development quality
criteria
* reusability (targeted on the library operators)
* readability of the description (documentation)
« testability
* parallel development
* etc.

©2005 Eserel Technologies:

Eszeais’]

35

Divide and Conquer

+ Applications usually contain
— an event-driven part
— a data-driven part

» Usually the event driven part pilots the data
driven one. Some functions of the event-driven
part are data-driven sub-systems

* Inside SCADE, Flat Sate Machines or SSMs can
be used to describe the event-driven parts

©2005 Estrel Technologies  ESTEAES |

Divide and Conquer
SCADE SSM used to describe

1

complex event driven part

el T

npua2

. Datarivantiods2

oupz

npa L

2 ©2005 Esterel Techmologies

36 L

Iy




Complete the Design

» Develop the algorithms of the basic components:
— with data-flow description (using SCADE)
— in a sequential way (using imported operators)

» Select and use libraries
— Improve consistency and quality

* Reiterate at sub-systems level

Stop when reaching basic operators, library nodes or
imported nodes.

37 ©2005 Esere Tecmnoogies 7886}

Software Coding

» Develop the code of the input/output
functions

» Develop the code of the components which
are not described in SCADE

* Generate the code of the whole SCADE
model according to the compiling mode
chosen during the software design

38 ©2005 Esere Tecnnoogies ~EZEAES”}

State Machines for State-based Logic

* Boxes are states
« Arcs are transitions

ON'SET_ON

383

OFFSET_OFF

« States and transition have labels to attach
names and behavior

« Commonly used for modeling control flow
and decision logic with intuitive meaning

39 ©2005 Estorel Technologies ~ ESTEAES |

Domains of Application
Airplane Cockpit Display management

States machines for managing the configurations
and the interactions with pilots

oms
Navigation
Alttuge  Informaton gy

Indicator  DisPlay

Several displays Brvcin

=>Parallelism for the
concurrent behaviors

Control

Groups of displays ‘ i
=>Hierarchy for the o
organization

Rudder/
Brake Pedals

Footrests

v Airplane Cockpit !

* There are alarms —
= Preemption to display them in priority

40 ©2005 Estorel Technologies ~ ESTEAES |

Domains of Application
Car Control and Comfort

+ Seat Memory

— State machines to memorize the seat
position preferences and their settings F#s

=> Hierarchy for the preferences
» Cruise Control

— State machines to decide the
functioning modes according to the
speed, user requests, events, etc.

= Preemption for exceptional cases
Multimedia Infotainement Systems

— States machines to handle the
modes, displays, user interface

=> Hierarchy, parallelism, preemption

41 ©2005 Esere Tecmnoogies ~EZ88EL )

Domains of Application
Communication Protocols

+ State machines for controlling the
communication aspects of a protocol

" date wite with buses TR OTITT T

— Encoding / Decoding
logic
— Bus access arbitration

— Examples: ARINC, CAN, TTP.
=> Parallelism, hierarchy, preemption (reset)

42 ©2005 Esere Tecmnoogies ~EZE8EL )




Summary of the Need

» State Machines for modeling and designing the
control logic aspects of applications with the
following fundamental modeling means:

— Parallelism modeling for capturing the concurrent
behaviors

— Hierarchy for design architecture
— Preemption for handling exceptions
* Smooth and consistent mix with data-flow design

=>» SCADE Safe State Machine is the solution!

43 ©2005 Esere Tecmnoogies 7886}

System development process

System informal
specification
System Prototyping

System Requirements
allocated to Software Software 1l 2]
process

SSM Editor

High-Level Requirements|

Software design process
& Architecture!

SSM Editor

Low-Level Requirements Software coding process

& Architecture

I Software
Source Code Integration

process

SCADE Software
Development

SSM in SCADE

» Capture the state-based logic of an
application

+ State machine based graphical
formalism with parallelism and hierarchy

+ Cycle-based computing model

+ Tightly coupled with the SCADE data-
flow language

¢ Formal semantics with deterministic
computation model

45 ©2005 Estorel Technologies ~ ESTEAES |

SSM Overview

» Graphical Elements:

— Simple states as ovals or
rectangles, transitions as | *
arrows, macro-states as L
rectangle boxes "

* Textual Elements:

— Input, outputs, and state
names

— Trigger expressions for
transition firing condition

— Actions expressions related
to transitions firing and state
activities

46 ©2005 Eserel Technologies:

Eszeais’]

SSM Node Naming

* The node name can be propagated on
the file name on demand
Open Tools 2 Options 2 General tab

Select to have a
dialog box entry to
edir the SSM node
name

Select to propagate
the SSM node e
name to the
underlying file name oo | wa |

Grapica ol oo

47 ©2005 Esere Tecmnoogies ~EZ88EL )

SSM Node Characteristics

» Share the SCADE predefined types

SCADE SSM
bool boolean

int integer

real float

+ Share all the user constants
» Share the imported type declarations

» Share all the functions related to the imported
nodes C functions with one output

48 ©2005 Esterel Techmologies

Iy




SSM Editor Overview

Toolbars
and menus

SSM 5 ‘
workspace
objects

SSM edition | 7]
area

SSM editor
output

49

-]

©2005 Esterel Technologies ~ESTEAE

©2005 Estere Tochoogios (~ESZEAE

51

» SSM I/O signals are declared

+ 3 kinds of signals:

SSM Inputs and Outputs

fcject

(2 Constant Blacks

(0 Variable Blocks
[ Type Blocks

=3 Dperators

= ABRO
=

at the SCADE SSM node
level

"
I
>

— Pure (bool) cs
— Valued (tuple [bool, type]) e

— Value-only (type) R T T
e mm——]
e

©2005 Eserl Tochroiogies ~ E572864”}

SSM Inputs and Outputs
Pure Signals

Carry a Boolean presence status:
true when present false when
absent

At each cycle, absent by default
and present if there is some
emitter in the cycle

Predefined signal tick, as the
SSM global clock, always
present

Inputs are set by the environment

E EJ SSMProject otp
-3 $8MProject
(2 Constant Blocks
(33 Varisble Blocks
(33 Type Blocks

© gug
Type: ooc

iid e [

Caed O Vauearh

©2005 Eserl Tochnoogies ~E572864”}

SSM Inputs and Outputs
Valued Signals

Equivalent to SCADE flows of
type

[bool, type]
where bool is the presence
status; type can be: bool, int,
real, or any SCADE type

Library 1ibssm provides e
shortcuts type _signal where . —

type can be bool, int, or real [Fa. cuisi  cviem
t

=4 SSMProject etp
(=423 S5MProject
(C3 Constant Blocks
(23 Vaisble Blocks
(23 Tvpe Blocks
-3 Operalors
=85 ABRO
ER=] riicce|

an initial value

Outputs must be provided with
st etronses B

SSM Inputs and Outputs

Value-only Signals

E [59 SSMProject ctp

Equivalent to SCADE flows of
same type

Possible types: bool, int,
real, and all user-defined
SCADE types

Assigned a new value from a
single emission in a cycle
otherwise, keeps the value of
previous cycle

Outputs must be provided with
an initial value

(0 Variable Blocks
[ Type Blocks

=3 Dperators
= ABRO

©2005 Esere Techoogies ~ESZEAG




Which Signal Kind?

Pure To model a logical event whose lifetime
and consideration is only meaningful in a
cycle of execution: alarm, threshold
detection

Value-only | To model a data-value whose value is
likely to be coming from the environment
or from a continuous internal computation

Valued Same as value-only and having
additionally a status to characterize the
cycles where it makes sense to analyze
the value

55 ©2005 Eserei Tecmongies ~ESZERES )

56 ©2005 Estere Tochoogios (~ESZEAE

-]

SSM States (1/3)

» Simple State
— Graphical oval or rectangle that can be named
— Basic memory element of a SSM
— At each cycle, is either active or not active

' To draw the simple states as rectangles, edit the text file
estudio_ssm.cfg in your application data settings and set
RECT_SIMPLE_STATES =1.

57 ©2005 Eserl Tochroiogies ~ E572864”}

SSM States (2/3)

* Macro-state
— Graphical box that can be named
— SSM container
— At each cycle, it is either active or not active

—When active, at least one state of the sub-
SSM it contains is active

MacroState

Creating a State

States

SimpleState

MacroState

[

1. Select the

state or macro- \
state creation
button

2. Drag and drop
the selection in
the edition area

\
ooles < @@o)r

oo

59 ©2005 Eserei Tecmongies ~ESZERES |

58 92005 Estoel Technobogies  ESTEAEL )
State Basic Attributes
Attributes | Fonts | Line Style | Fil Color | Comments| — Name: a SCADE identiﬁer,
Simple State .
Name: Hsclang\eﬁ\mﬁlale e'g' AlarmON‘ FIIghtMOde’
—_— = Temperature
Termial ERgees T
Qrlnside Action: | N\ [Er=rem N — .
o sxects Ontsids whenenterng stter Mark as initial or final
e
owncion ||
OK. Apply Cancel
60 2005 Esorei Tesmongies ~ESZERES )

10



Initial State

+ Graphically depicted as
a bold circle for simple states
and a bold box for macro-states

¢ The initial states is active
whenever the SSM is started or
the macro-state it is in is
activated

* Right-click on the state and
select Toggle initial to set it as
initial

61

OFF.
X Dekte
9 Out
B3 Copy
@ Paste

Show Pacert
Propetes
© Toggle el
© Toggle Final

©2005 Estorel Technoboges ~ ESZERES )

Other State Properties

» State look-and-feel is
customizable
— Font of state label
— Line style
— Colors

— Comments

Comment. 2 stale with customized look-and-feel

=)

|| (| (e

©2005 Eserl Tochroiogies ~ E572864”}

©2005 Esterel Technoboges ~ ESZERES )

Final States

* Also called terminal, graphically
denoted as a doubled circle

@
X Delete

» Only simple states can be final o
B Cony

* When reached, means that the o
SSM activity terminates (treated '
later)

* Right-click on the state and
select Toggle final to set it as
final

©2005 Estorel Technoboges ~ ESZEREL

Local Signals

Defined in the scope ofa |
macro-states as a comma —
separated list of signal et
declarations.

Can be read or produced

at any part of the contents
of the macro-state

LocalSignals.

Right-click in the macro-
state area and select
Properties.

Local signals can be pure,
valued, or value-only,
possibly initialized

©2005 Eserl Tochnoogies ~E572864”}

SSM Transitions

Have one source state, and one target state

If source state is active, preempts the activity
of source state starting the activity of target
state

A transition can be fired the next cycle after
the cycle their source has started activity.

©2005 Estorel Technoboges ~ ESZEREL )




Creating a Transition

1. Select the transition
creation button.

2. Click in the source
state and drag to the
target state. Release
button when
highlighting the target
state.

67 ©2005 Esterel Technologies ~ ESZAE} ]

Transition Trigger

Fire transition upon the presence of a signal.

b -n

OFF,

« If Signal ON is present (true), and if State
OFF is active, then preempts State OFF and
activates State ON.

« Signal ON can be an input from the SSM
context, an output produced by the SSM, or
an emitted local signal.

69 2005 Esre Tochongios iG]

Other Transition Properties

 Transition look-and-feel
can be customized:
— Font for labels
— Line style ) ]
— Comments

Comment a customized ransition

68 ©2005 Esere Tecnnoogies ~EZEAES”}

Transition Trigger

Right-click on
transition and open
Properties.

a0 ee < @aor

Transition priority.

Enter transition
trigger as a Boolean
expression of signal
presence statuses:
(A and not(B))
(Cor D).

Click on Apply or
OK to validate.

70 ©2005 Estorel Technologies ~ ESTEAES |

Transition Priorities

* Priorities are automatically set
by the Editor as soon as a
state has two or more outgoing
transitions

» To ensure determinism, when
two transitions have a true
triggering condition, only the
one with highest priority is
fired.

« Implicit negation of all triggers ~ Q: What if transition of
from highest transition priority <2> is fired?

STATE_1

71 ©2005 Esterel Technologies (~ ESZAE) ]

Transition Effect

Perform an action while firing a transition

ONSET_ON

OFFSET_OFF

« If Signal ON is present (true), and if State
OFF is active, then preempts State OFF and
activates State ON.

» Perform an action: emits the signal SET_ON.

« Signal SET_ON is an output produced by the
SSM.

72 ©2005 Esterel Technologies ~ ESZAE) ]

12



[y
o]
v
®
®
=
o

73

Transition Effect

Trigger: has to be
true to fire the
transition.

|| Effect: list of signal
to emit while firing
the transition.

©2005 Estrel Technologies  ESTEAES |

75

Valued Signals Syntax

To read the value of a valued or value only signal s,
write ?S
{ ?Pressure > 10.0f }
To emit a valued signal S with value val, write
S (val), where can be:
— Aconstant value: Alarm(false), Level (LOW),
Speed (90) , Angle (0.5f)
— The value of another signal: MaxSpeed (?Speed)
— The return value of a function call:
Speed (Max (?X,?Y)), Alarm(ValveOpen())

— The result of an arithetic expression over values:
MaxSpeed (?Speed + Max(?X,?Y) + 1)

Signal Emission

* Emitted signals are broadcast to the whole
SSM the signal is defined in.
+ In a given cycle, if a signal is emitted then:
— ltis present in that cycle (pure and valued signals).
— For value-only and valued, the new value is
accessible for any reader in that cycle.
— It is guaranteed that any reader is always
scheduled after any updated.

74 ©2005 Esere Tecnnoogies ~EZEAES”}

©2005 Estorel Technologies ~ ESTEAES |

The pre Operator

Access the previous status or value of a

signal

» For any signal s, pre (S) is the value of
the status at the previous cycle

» For a valued or value-only signal v,
pre (?V) is the value of the data carried
by v at the previous cycle

» The pre operator cannot be applied on

itself

76 ©2005 Estorel Technologies ~ ESTEAES |

Transition Labeling (1/3)

Count Event condition { Data condition } | Effect
— —

—~—
Trigger

Trigger:
Event condition

|| Trigger:

Data condition

Alarinon {2Pressite > 0/
StopEngine, SetPressure{0), CloseValve

Effect: signal
emissions

©2005 Estrel Technologies  ESTEAES |

78

Transition Labeling (2/3)

Count Event condition { Data condition } | Effect
— —

—~—
Trigger

* Trigger. Conjunction (AND) of two conditions
— Event condition: A formula of signal statuses,
e.g.: A and not(B)
— Data condition: A formula of data conditions surrounded
by {}’, e.g. { ?Level >= 10 and (Max(?A,?B) < ?C) }

» An optional counter Count. number of times the
entire trigger has to be true
5 times tick
3 times CLICK {?KEY = SHIFT}

©2005 Estrel Technologies  ESTEAES |

13



Transition Labeling (3/3)

Count Event condition { Data condition } | Effect
— —

——
Trigger

* Effect: List of signal emissions:
Sum(pre (?Sum)+1) , AlarmOn, StopEngine

79 ©2005 Estorel Technoboges ~ ESZERES )

Transition and Initial States

+ At the initial cycle, the initial state’s transitions
are immediately fire-able.

» At the other cycles, the initial state behaves
like any other state.

» Exercise: explain the difference between the 2
SSM below:

onser_on Q

OFF'SET_OFF

ON'SET_ON

OFFISET_OFF

80 ©2005 Estorel Technoboges ~ ESZEREL

Transition and Terminal States

+ A final state cannot have
outgoing transitions: it is a

transient state, not a state —r

memory element where time b

can elapse. -
« When a triggered transition

reaches a final state, the o

SSM or macro-state it

belongs to ends its

execution

81 ©2005 Eserl Tochroiogies ~ E572864”}

ScApE?
° —

83 ©2005 Esterel Tochnologes ~ ESTERE)

Transition: Summary

» At most one transition is fired in a cycle
» A transition can be fired if its trigger condition is
true and:
— If its source was active at the previous cycle, or
— At the initial cycle if its source state is the initial state.
» Label of the form:
Count Event condition { Data condition } | Effect
where:
— Count: occurrence count for the event condition

— Event condition: Boolean expression testing signal
presence statuses.

— Data condition: Boolean expression testing values of
signals and functions

— Effect: list of signal emissions.

©2005 Eserl Tochnoogies ~E572864”}

Macro-states

State containing a sub-SSM

— When activated, activates immediately the SSM is contains
Hierarchy construct

— To increase the readability and maintainability

— To comply with software functional architecture constraints

s 5

=N

[ o =) ( PRSI0 B

‘= i=
= o)
& &

©2005 Esterel Technoboges ~ ESZEREL

14



Action Attributes

Actions can be performed upon the activity status of a state
and are expressed the same way as transition effects

Onlnside: Action list to
e T T .
R e e execute when inside the state

Graphical Macrostate

Nane: on
i [a]
Temmina O Pocess: | GraphicaMpdfoctale v

|_—"| OnEntry: Action list to execute
= when entering the state.

Orinside Actio:

i~ An initial state active at the first
\%‘ cycle behaves as if it is entered :

- OnEntry actions are executed,
o W e W ] ! ’ g
- Oninside actions are not executed.

85 ©2005 Esere Tecmnoogies 7886}

Example: Sustaining a Signal (1/2)

Emit a signal whenever a state is active

» Solution 1: create a transition that emits the
signal as long as the state is active

/15_OFF

n i ‘ o

©2005 Esterel Technologies

Iy

Example: Sustaining a Signal (2/2)

Emit a signal whenever a state is active
» Solution 2: create an Onlnside action to the

state
& Properties 3]
Attibutes | Fonts | Line Style | Fil Color | Comments
Simple State
None: o
OFF =
O Poesc  [Spbsas @
-
[ S —
To execute the Ontriy Acir
action also when Oneit acion
entering the state

87 ©2005 Estorel Technologies ~ ESTEAES |

Example

©2005 Eserel Technologies:

eaziz’|

15



